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ABSTRACT
Many environmental processes, such as rainfall, wind, or snowfall, are inherently spatial, and the modeling of extremes has to
take into account that feature. In addition, such processes may be associated with a nonextremal feature, for example, wind speed
and direction or extreme snowfall and time of occurrence in a year. This article proposes a Bayesian hierarchical model with a
conditional independence assumption that aims at modeling simultaneously spatial extremes and an angular component. The
proposed model relies on the extreme value theory as well as recent developments for handling directional statistics over a con-
tinuous domain. Working within a Bayesian setting, a Gibbs sampler is introduced whose performances are analysed through a
simulation study. The paper ends with an application to extreme wind speed in France. Results show that extreme wind events in
France are mainly coming from the West, apart from the Mediterranean part of France and the Alps.

1 | Introduction

The modeling of environmental extremes, such as floods, heat
waves, or extreme wind events, is of paramount importance as
a potential cause of severe damage to infrastructures or ecosys-
tems. To better understand these climatic events and provide
relevant guidelines to policy makers, the last decades have seen
many theoretical and methodological developments for the statis-
tical modeling of spatial extremes. For extreme-value processes,
many approaches have been suggested ranging from Bayesian
hierarchical models (Cooley et al. 2007; Ribatet et al. 2012), cop-
ula modeling (Nelsen 2006; Embrechts et al. 2001; Gudendorf
and Segers 2010; Ribatet and Sedki 2013), max-stable, and Pareto
processes (Schlather 2002; Padoan et al. 2010; Dombry and Rib-
atet 2015; Thibaud and Opitz 2015; de Haan 1984; de Haan
and Ferreira 2014) or asymptotic independent models (Davison
et al. 2013; Huser and Wadsworth 2022). Contrary to all the
other aforementioned approaches, Bayesian hierarchical models
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(with the so- called conditional independence assumption) stand
apart as they cannot model areal quantities as cumulative rain-
fall amount over a spatial domain. Although this might appear
as a severe limitation, such models have been found to be very
competitive and widely applicable as opposed, for instance, to
max-stable or Pareto processes for which inference is difficult,
and pointwise predictions are less accurate (Davison et al. 2012;
Dombry et al. 2017; Huser et al. 2019). Davison et al. (2012, 2013)
and Huser and Wadsworth (2022) give a comprehensive overview
of available approaches and discuss the pros and cons of each
approaches.

Despite all these significant advances, emphasis has often been
put on extreme event magnitude only, that is, estimation of return
levels, but, depending on the situation, this might be too limited.
For instance, one may have to work in a multivariate setting to
allow for the joint modeling of extreme wave heights and surge
levels (Dixon et al. 1998). In this context, Genton et al. (2015)
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and Hashorva and Kume (2021) propose a framework to model
multivariate spatial extremes but as it fully complies with the
extreme value theory, this framework may not be relevant when-
ever at least one component of the multivariate process cannot
be treated as extreme. Still there exists case studies where one
needs to model a multivariate process where some components
are extremes and some are not. As an illustration, impacting their
structural integrity and durability (Holmes 2015), the design of
buildings or power lines must take into account for both magni-
tude and direction of extreme wind events. Clearly in this con-
text, the wind speed is the extremal component while the wind
direction is nonextremal. Similarly, the design of wind turbines
and the layout of wind farms require careful consideration of
extreme wind direction changes, as these can lead to significant
load fluctuations on turbine blades, potentially causing mechani-
cal failure or reducing efficiency (Sang et al. 2017). In France, the
government has set ambitious targets for wind energy production
as part of its transition to renewable energy sources (SFEC 2023)
and it is therefore essential to understand and accurately
model extreme wind phenomena, including both speed and
direction.

As emphasized with the two previous examples, this work focuses
on the special case where the nonextremal component is an
angle. Since the pioneering review of Mardia (1972), the theoret-
ical framework for directional data is now well established, see
Mardia and Jupp (2009) for a comprehensive review. Still, the spa-
tial modelling of an angular process is challenging as the classical
circular distributions, for example, Von Mises or wrapped distri-
butions do not easily extend to the spatial setting. Fortunately,
and following the works of Gelfand and Wang (2013, 2014), the
family of projected circular distributions appears to be especially
appealing in this context as, as we will see later, one can work
with bivariate Gaussian processes within an augmented data
framework. Consequently, and although other approaches might
be used (Casson and Coles 1998; Breckling 1989; Jona-Lasinio
et al. 2012), throughout this paper, we will restrict our attention
to projected Gaussian circular distributions.

The paper is organized as follows: Section 2 introduces two sep-
arate spatial models, one for the angular component of the data
and the other for its extremal part. Section 3 explains how these
two previous models can be merged into a single one to enable the
joint modeling of the intensity and the angular component of spa-
tial extreme events. Section 4 gives results of a simulation study,
while Section 5 applies the proposed methodology to extreme
wind speeds in France. The paper ends with a discussion. Spe-
cific details on how the proposed model is fitted from MCMC
algorithms are deferred to the appendix.

2 | Independent Modeling of Spatial Extremes
and Angles

Recall that our primary objective is to propose a model for
a bivariate stochastic process {(𝜂(𝑠), 𝜃(𝑠))⊤ ∶ 𝑠 ∈  , where the
first component {𝜂(𝑠) ∶ 𝑠 ∈ } is the extremal component, for
example, extreme wind speed, and the second {𝜃(𝑠) ∶ 𝑠 ∈ }
the angular one, for example, associated wind direction. In this
section, we will introduce successively a sensible model for each
of these components.

2.1 | Latent Variable Model for Extremes

As stated within the introduction, although many approaches
exist for the spatial modeling of extreme event magnitude, we
restrict our attention to a single approach: the Bayesian hierarchi-
cal model of Cooley et al. (2007) that has been found very com-
petitive in many situations. Although working with exceedances
above a threshold would be possible, in this paper, we will restrict
our attention to (pointwise) block maxima data, for example,
annual maxima wind speed. With this setting, the univariate
extreme value theory (Coles 2001; de Haan and Fereira 2006)
states that it is sensible to assume that the univariate marginal
distributions of {𝜂(𝑠) ∶ 𝑠 ∈ } belong to the Generalized Extreme
Value (GEV) family (Jenkinson 1955), that is, for all 𝑠 ∈  ,
we have

Pr{𝜂(𝑠) ≤ 𝑧} = exp

[
−
{

1 + 𝜉(𝑠)𝑧 − 𝜇(𝑠)
𝜎(𝑠)

}−1∕𝜉(𝑠)
]

,

1 + 𝜉(𝑠)𝑧 − 𝜇(𝑠)
𝜎(𝑠)

> 0 (1)

where 𝜇(𝑠) ∈ ℝ, 𝜎(𝑠) ∈ (0,∞), 𝜉(𝑠) ∈ ℝ are, respectively, the loca-
tion, scale, and shape parameters of the GEV distribution.

As suggested with the above notations, it is not unusual that the
process {𝜂(𝑠) ∶ 𝑠 ∈ } is nonstationary and, that, in particular,
one has to assume that the GEV parameters {𝜇(𝑠), 𝜎(𝑠), 𝜉(𝑠) ∶ 𝑠 ∈
} vary smoothly over the spatial domain  according to some
(trivariate) stochastic process. To avoid unnecessarily compli-
cated structures, it is common practice (Casson and Coles 1999;
Cooley et al. 2007) to assume that each GEV parameter is mutu-
ally independent and follows univariate Gaussian processes. For
example, with the French wind speed dataset of Section 5, we will
assume that the latent GEV location parameter process {𝜇(𝑠) ∶
𝑠 ∈ } follows a Gaussian process with an isotropic exponential
covariance family, that is, for all 𝑠1, 𝑠2 ∈  ,

𝛾𝜇(ℎ) = Cov{𝜇(𝑠1), 𝜇(𝑠2)} = 𝜏𝜇 exp
(
− ℎ

𝜆𝜇

)
, ℎ = ||𝑠1 − 𝑠2||

where𝝍𝜇 = (𝜏𝜇, 𝜆𝜇)⊤ ∈ (0,∞)2 are respectively the sill and range
parameters, and mean function

𝑚𝜇(𝑠) = 𝛽0,𝜇 + 𝛽1,𝜇alt(𝑠)

where alt(𝑠) denotes the elevation at location 𝑠 ∈  and 𝜷𝜇 =
(𝛽0,𝜇, 𝛽1,𝜇)⊤ are unknown regression parameters. Similar for-
mulations are used for the scale and shape GEV parameter
processes.

Then we further impose a conditional independence assumption,
that is, conditionally on these three Gaussian processes, the block
maxima are assumed to be independent:

𝜂(𝑠)|{𝜇(𝑠), 𝜎(𝑠), 𝜉(𝑠)}ind∼GEV{𝜇(𝑠), 𝜎(𝑠), 𝜉(𝑠)}, 𝑠 ∈ 𝒳

𝜇(⋅) ∼ GP(𝜷𝜇;𝝍𝜇)

𝜎(⋅) ∼ GP(𝜷𝜎 ;𝝍𝜎)

𝜉(⋅) ∼ GP(𝜷𝜉 ;𝝍 𝜉) (2)
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where GP(𝜷;𝝍) denotes a univariate Gaussian process whose
mean function depends on the regression parameter vector 𝜷 and
whose covariance function depends on the spatial dependence
parameter vector𝝍 . Note that, throughout this paper, 𝜷 will refer
to the parameter vector of mean functions while 𝝍 to the spatial
dependence parameter vector of (cross)-covariance functions.

2.2 | The Projected Gaussian Process Model

We now focus on the angular component {𝜃(𝑠) ∶ 𝑠 ∈ } and
restrict our attention to a single approach: the projected
Gaussian model. Focusing only on this model is motivated
by the fact that it extends naturally to the spatial setting.
However, before working in a spatial context, we first recall
how one can get univariate angular distributions from projec-
tions. The (univariate) projected Gaussian distribution (Gelfand
and Wang 2013) is the distribution of a random angle 𝜃

obtained via the projection of a bivariate Gaussian vector
X = (𝑋1, 𝑋2)⊤ onto the unit circle 𝕊1 = {x ∈ ℝ2 ∶ ||x||2 = 1}.
More formally, we have 𝜃 = arctan∗(𝑋2∕𝑋1), where arctan∗ is a
quadrant-specific tangent inverse function (Jammalamadaka and
SenGupta 2001).

Extending the above univariate circular distribution to the spa-
tial setting amounts to switch the bivariate random vector X
for a bivariate Gaussian process {X(𝑠) = (𝑋1(𝑠), 𝑋2(𝑠))⊤ ∶ 𝑠 ∈ }
and gives the projected Gaussian process model (Gelfand and
Wang 2014). The model is then completely characterized by spec-
ifying the mean and cross–covariance functions, that is, for all
𝑠, 𝑠1, 𝑠2 ∈  ,

𝑚𝜃 ∶ 𝑠 ↦ 𝑚𝜃(𝑠) = (𝑚(1)
𝜃
(𝑠), 𝑚(2)

𝜃
(𝑠))⊤ = 𝔼[X(𝑠)],

𝛾𝜃 ∶ (𝑠1, 𝑠2) ↦ 𝛾𝜃(𝑠1, 𝑠2) = 𝔼[{X(𝑠1) − 𝑚𝜃(𝑠1)}{X(𝑠2) − 𝑚𝜃(𝑠2)}⊤]

In practice, one must assume some relevant parametric struc-
tures. For example, for the French wind speed data set of
Section 5, Model 0 assumes that the mean function satisfies

𝑚
(1)
𝜃
(𝑠) = 𝛽

(1)
0,𝜃

+ 𝛽
(1)
1,𝜃

lon(𝑠) + 𝛽
(1)
2,𝜃

lat(𝑠) + 𝛽
(1)
3,𝜃

alt(𝑠),

𝑚
(2)
𝜃
(𝑠) = 𝛽

(2)
0,𝜃

+ 𝛽
(2)
1,𝜃

lon(𝑠) + 𝛽
(2)
2,𝜃

lat(𝑠) + 𝛽
(2)
3,𝜃

alt(𝑠)

where lon(𝑠), lat(𝑠), and alt(𝑠) denote longitude, latitude, and
elevation, respectively, at location 𝑠 ∈  and 𝜷𝜃 = {𝛽(𝑗)

𝑖,𝜃
∶ 𝑖 =

0, . . . , 3, 𝑗 = 1, 2} are unknown regression parameters.

Similarly, one can assume a stationary, isotropic, and separable
cross- covariance function, that is, for all 𝑠1, 𝑠2 ∈  , we have

𝛾𝜃(𝑠1, 𝑠2) = 𝑇 ⊗ 𝜌(ℎ), 𝑇 =

[
𝜏𝜃 𝜌𝜃

√
𝜏𝜃

𝜌𝜃

√
𝜏𝜃 1

]
𝜏𝜃 > 0, 𝜌𝜃 ∈ (−1, 1) (3)

where ℎ = ||𝑠1 − 𝑠2||2, ⊗ denotes the Kronecker product, 𝜌 is any
parametric correlation function, for example, exponential, 𝜏𝜃 =
Var{𝑋1(𝑠)} and 𝜌𝜃 = Cor{𝑋1(𝑠), 𝑋2(𝑠)} is the cross–correlation
parameter for all 𝑠 ∈  . As pointed out by Gelfand and
Wang (2013), one must set Var{𝑋2(𝑠)} = 1 to ensure identifia-
bility of the parameters. Figure 1 plots one realization from the
projected Gaussian process model and exhibits how it can han-
dle a large variety of behaviors, for example, multimodality and
asymmetry.

Working with this model is however challenging as no closed
form exists for its likelihood. Fortunately, this hurdle can be
bypassed by working within an augmented data framework and
defining a radial random process {𝑅(𝑠) ∶ 𝑠 ∈ } so that, for any
𝑠 ∈  , one can easily switch from polar coordinates {𝑅(𝑠), 𝜃(𝑠)}
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FIGURE 1 | Illustration of the projected Gaussian process. Left: Realization of a projected Gaussian process with three highlighted locations (colored
arrows). Right: projected Gaussian densities at the three highlighted locations with corresponding observed direction (colored circles).
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to Cartesian ones X(𝑠) = {𝑅(𝑠) cos 𝜃(𝑠), 𝑅(𝑠) sin 𝜃(𝑠)}⊤. In prac-
tice, inference is therefore based on the induced bivariate Gaus-
sian process {X(𝑠) ∶ 𝑠 ∈ } and it is easily seen that, for any
s = (𝑠1, . . . , 𝑠𝑘)⊤ ∈ 𝑘, 𝑘 ≥ 1, the joint density of the random vec-
tor {(𝑅(𝑠𝑗), 𝜃(𝑠𝑗)) ∶ 𝑗 = 1, . . . , 𝑘} is nothing but a multivariate
Gaussian density written in polar coordinates, that is, for any
r ∈ (0,∞)𝑘, t ∈ [0, 2𝜋)𝑘 we have

𝑓s(r, t) = (2𝜋)−𝑘∕2|𝛾𝜃(s)|−1∕2

exp

⎛⎜⎜⎜⎜⎜⎜⎝
−

{(
r cos t

r sin t

)
− 𝑚𝜃(s)

}⊤

𝛾𝜃(s)−1

{(
r cos t
r sin t

)
− 𝑚𝜃(s)

}
2

⎞⎟⎟⎟⎟⎟⎟⎠
𝑘∏

𝑖=1
𝑟𝑖

(4)
where 𝑚𝜃(s) = 𝔼[X(s)] and 𝛾𝜃(s) is a block matrix of dimen-
sion 2𝑘 × 2𝑘 whose blocks (each of dimension 𝑘 × 𝑘) are
Cov{𝑋𝑖(s), 𝑋𝑗(s)}, 𝑖, 𝑗 = 1, 2. Note that in (4), the multiplications
r cos t and r sin t are done component-wise.

3 | Extreme-Angular Bayesian Hierarchical
Model

In this section, we detail how one can merge models of
Sections 2.1 and 2.2 to define what we shall call an extreme-
angular Bayesian hierarchical model. Clearly, to allow for some
dependence between the extremal process {𝜂(𝑠) ∶ 𝑠 ∈ } and
the angular one {𝜃(𝑠) ∶ 𝑠 ∈ }, the two aforementioned models
should interact together, and, in this paper, we propose that the
mean function 𝑚𝜃(⋅) of the projected Gaussian process may also
depend on the GEV parameters latent processes {𝜇(𝑠) ∶ 𝑠 ∈ },
{𝜎(𝑠) ∶ 𝑠 ∈ } and {𝜉(𝑠) ∶ 𝑠 ∈ }. The motivation for this choice
is that it may happen that the most severe extreme events are
associated with a very specific angle. For example, for the French
wind speed dataset of Section 5, given that we have observed
a very large extreme wind speed somewhere along the Atlantic
coast, it is likely that the associated wind direction is West or
South West. The converse, however, is not necessarily true as the
knowledge of a wind direction may not give any indication that
the wind speed is extremely severe or not.

Our proposed model is

𝜂(𝑠)|{𝜇(𝑠), 𝜎(𝑠), 𝜉(𝑠)} ind∼ GEV{𝜇(𝑠), 𝜎(𝑠), 𝜉(𝑠)}, 𝑠 ∈ (
𝑅(⋅) cos 𝜃(⋅)
𝑅(⋅) sin 𝜃(⋅)

)|{𝜇(⋅), 𝜎(⋅), 𝜉(⋅)} ∼ GP2,polar(𝜷𝜃;𝝍𝜃)

𝜇(⋅) ∼ GP(𝜷𝜇;𝝍𝜇)

𝜎(⋅) ∼ GP(𝜷𝜎 ;𝝍𝜎)

𝜉(⋅) ∼ GP(𝜷𝜉 ;𝝍 𝜉) (5)

where GP2,polar(𝜷𝜃;𝝍𝜃) denotes a bivariate Gaussian process
whose likelihood is expressed in polar coordinates as in (4),
mean function 𝑚𝜃(⋅) depends on the regression parameter vec-
tor 𝜷𝜃 and 𝝍𝜃 = (𝜏𝜃, 𝜌𝜃, 𝜆𝜃) are the spatial dependence parame-
ters appearing in the cross-covariance function (3)—𝜆𝜃 being the
range parameter of the exponential correlation function 𝜌(ℎ) =
exp(−ℎ∕𝜆𝜃).

It is important to emphasize that the mean function 𝑚𝜃 may
depends not only on spatial covariates such as longitude or lat-
itude, the GEV parameters 𝜇(⋅), 𝜎(⋅), and 𝜉(⋅) but also on any
suitable transformation of these GEV parameters. For instance,
for the French wind speed dataset of Section 5, we will assume
that the mean function is

𝑚
(1)
𝜃
(𝑠) = 𝛽

(1)
0,𝜃

+ 𝛽
(1)
1,𝜃

𝑞0.95(𝑠) + 𝛽
(1)
2,𝜃

𝑞0.99(𝑠)

𝑚
(2)
𝜃
(𝑠) = 𝛽

(2)
0,𝜃

+ 𝛽
(2)
1,𝜃

lon(𝑠) + 𝛽
(2)
2,𝜃

lat(𝑠) + 𝛽
(2)
3,𝜃

alt(𝑠)

where 𝑞𝑝(𝑠) is the quantile of order 𝑝 ∈ (0, 1) of the GEV distribu-
tion at location 𝑠, that is, with location, scale, and shape parame-
ters equal to 𝜇(𝑠), 𝜎(𝑠), and 𝜉(𝑠) respectively.

Inference from Model (5) is challenging as, due to the pres-
ence of the latent processes 𝜇(⋅), 𝜎(⋅), 𝜉(⋅) and 𝑅(⋅), the likeli-
hood has an intractable integral representation. Although other
approaches are possible, for example, E.-M. type approaches
(Dempster et al. 2018), in this paper we suggest to work within
a Bayesian framework and perform numerical integration using
MCMC techniques (Hastings 1970). Figure 2 gives the directed
acyclic graph of Model (5) and shows where prior distribu-
tions are placed and how the latent radial process {𝑅(𝑠) ∶ 𝑠 ∈
} comes into view. In practice, a Gibbs sampler (Casella and
George 1992) is used whose explicit expressions and implemen-
tation details can be found in Appendix A. Note that numer-
ical integration is performed by sampling from the full condi-
tional distributions of the latent variables, that is, Steps 1 and 2
of Appendix A.

Spatial models often aim at making predictions at unobserved
locations 𝑠∗ ∈  such as the values of the GEV parameters, return
levels or the circular mode of the posterior distribution of 𝜃(𝑠∗).
Within a Bayesian framework, it is typically done through the
posterior predictive distribution

∫ 𝜋(𝜂(𝑠∗), 𝜃(𝑠∗)|𝚼,𝑛)𝜋(𝚼|𝑛)d𝚼

where 𝑛 = {(𝜂𝑖(𝑠𝑗), 𝜃𝑖(𝑠𝑗)) ∶ 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑘} is the
dataset of values of the processes over 𝑘 sites and 𝑛 replicates and
𝚼 is the vector containing all the parameters of the model. As
expected, the above integral representation has no closed form
and, similarly to the Gibbs sampler introduced above, one has to
resort to numerical integration where each state of the Markov
chain generated during the fitting stage is browsed to generate a
sample from this distribution, see Algorithm 1. Algorithm 1 can
be used in two different ways to get what one may call uncon-
ditional or conditional predictions. Unconditional predictions
consist in sampling from the predictive posterior distribution
exactly as described in the algorithm. Conditional sampling is
somewhat similar to kriging and imposes that the angular pro-
cess satisfies 𝜃(𝑠̃𝑗) = 𝜃𝑗 for some conditioning spatial locations
𝑠̃𝑗 ∈  and conditioning values 𝜃𝑗 ∈ [0, 2𝜋), 𝑗 = 1, . . . , 𝑘̃, 𝑘̃ ≥ 1.
Often, but not invariably, the conditioning locations 𝑠̃𝑗 will be
identical to those where we have some data, that is, 𝑠̃𝑗 = 𝑠𝑗 ,
𝑗 = 1, . . . , 𝑘. In this situation, line 4 of Algorithm 1 is substituted
by the sampling of latent radius 𝑅𝐼 (⋅) at each conditioning
locations 𝑠̃𝑗 and then proceed with the rest of the algorithm as
usual.

4 of 14 Environmetrics, 2025
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ALGORITHM 1 | Pointwise predictive posterior predictions
from the extreme-angular model.

input : A Markov chain {𝚼𝑡 ∶ 𝑡 = 1,… , 𝑇 } sampledfrom the Gibbs
sampler introduced above and a new location 𝑠∗ ∈  .

output: Predictive posterior predictions of an unknown
quantity 𝑈 (𝑠∗).

1 for 𝑡 = 1,… , 𝑇 do
/* Conditional sampling of the GEV parameters

*/

2 Sample from 𝜇𝑡(𝑠∗) ∣ 𝜇(𝐬),𝚼𝑡, that is, aconditional Normal
distribution;

3 Sample 𝜎𝑡(𝑠∗) and 𝜉𝑡(𝑠∗) in the same way;
/* Compute the Cartesian coordinates */

4 Pickup a random replicate 𝐼 ∼ Unif{1,… , 𝑛};
5 Compute the Cartesian coordinates

𝐗(𝑠𝑗 ) = {𝑅𝐼 (𝑠𝑗 ) cos 𝜃𝐼 (𝑠𝑗 ), 𝑅𝐼 (𝑠𝑗 ) sin 𝜃𝐼 (𝑠𝑗 )}⊤, 𝑗 = 1,… , 𝑘

/* Conditional sampling of the bivariate

Gaussian process */

6 Sample from 𝐗(𝑠∗) ∣ 𝐗(𝐬), that is,a conditional bivariate Normal
distribution;

/* Retrieve the angular component */

7 Compute 𝜃𝑡(𝑠∗) = arctan∗{𝑋1(𝑠∗)∕𝑋2(𝑠∗)};
/* Generate a realization of the quantity of

interest */

8 Compute (or sample) 𝑈𝑡(𝑠∗) based on the simulated
values 𝜇𝑡(𝑠∗), 𝜎𝑡(𝑠∗), 𝜉𝑡(𝑠∗) and 𝜃𝑡(𝑠∗);

9 end
10 Return the sample mean, median, and mode based on

{𝑈𝑡(𝑠∗)∶ 𝑡 = 1,… , 𝑇 };

4 | Simulation Study

In order to assess the performance of our MCMC sampler, we
run a simulation study with a varying sample size 𝑛, number
of locations 𝑘, and three different dependence configurations as
shown in Table 1. In Configuration I, the angular mean func-
tion 𝑚𝜃 is independent of the GEV parameters and, consequently,
angles and extremes are independent. With this setting, the Gibbs
sampler introduced in Section 3 is equivalent to the use of two
independent samplers: one for the GEV component and one for
the angular component. Configuration II provides a linear depen-
dence between angles and extremes through the shape parameter
of the GEV distribution. However, since the Gaussian process for
the shape parameter has a constant mean and low variance, the
shape parameter is roughly constant over  and, as so, depen-
dence between angles and extremes magnitudes is limited. On
the contrary, in Configuration III, the angular mean function
depends on the GEV location parameter, which varies signifi-
cantly over yielding to a strong dependence between angles and
extremes magnitudes.

Working within a fixed domain framework, that is, the spatial
domain  is fixed, we numerically analyze infill and sam-
ple size asymptotics, that is., when the number of locations
𝑘 → ∞, the sample size 𝑛 being fixed, and conversely. For each

dependence setting of Table 1, we consider the cases where
𝑘 = 10, 25, 50, and 𝑛 = 20, 50, 100, leading to 27 configurations
overall.

Figure 3 shows the evolution of the mean squared error for some
Bayesian pointwise estimators as 𝑘 and 𝑛 increase. The top row
of Figure 3 focuses on the Gaussian process of the GEV location
parameter. More precisely, results are shown for 𝛽2,𝜇 , a regression
parameter of the mean function 𝑚𝜇 , the range parameter 𝜆𝜇 of the
covariance function 𝛾𝜇(⋅) as well as the ratio 𝜏𝜇∕(1 + 𝜆𝜇), where
𝜏𝜇 is the sill parameter of 𝛾𝜇(⋅). As expected, the mean squared
error (MSE) for 𝛽2,𝜇 decreases as both 𝑘 and 𝑛 increase. Indeed,
as 𝑘 increases, the number of GEV parameters increases and the
linear structure 𝔼[𝜇(𝑠)] = 𝑥(𝑠)⊤𝜷𝜇 becomes more apparent. Sim-
ilarly, as the number of replicates 𝑛 increases, the GEV parameter
estimates become increasingly more accurate, and the above lin-
ear structure has less noise. Results (not shown) for other mean
function regression parameters show similar patterns across all
dependence configurations.

Interestingly, the MSE for 𝜆𝜇 has a completely different behav-
ior and no convergence is visible. A similar pattern (not shown)
can be seen for the sill parameter 𝜏𝜇 . As shown in Zhang (2004),
there is no consistency in the estimation of both the sill and range
parameters of a Gaussian process with a single realization. This
result applies to the GEV part of our model as each location has a
single set of GEV parameters and, consequently, a single realiza-
tion of the Gaussian processes.

The bottom row of Figure 3 is similar to the top row with an
emphasis on the angular component, namely 𝛽

(2)
2,𝜃

, 𝜌𝜃 and 𝜆𝜃 . As
expected and using the same arguments as the ones stated pre-
viously, the evolution of the MSE for 𝛽

(2)
2,𝜃

is similar to that for
𝛽2,𝜇 . There is, however, a subtle difference in the estimation of
the parameters of the bivariate Gaussian process {𝑿(𝑠) ∶ 𝑠 ∈ }
compared to that for the GEV parameters, for example, {𝜇(𝑠) ∶
𝑠 ∈ }. Contrary to the latter case, parameters are now estimated
from 𝑛 > 1 independent replicates, and no consistency issues
exist for the joint estimation of the sill and range parameters.

At first sight, the above lack of consistency may cause problems
in the estimation of the GEV parameters or related quantities
such as quantiles. Fortunately, Zhang (2004) have shown that the
ratio of the sill and range parameters can be consistently esti-
mated (see top right panel of Figure 3) and, more importantly,
that there is no impact on the predictions of the GEV parameters.
Figure 4 compares the true GEV parameters from that estimated
from our MCMC sampler. As expected, one can see that the pre-
dicted GEV parameters match the theoretical ones. The shape
parameter being usually harder to estimate, slightly worse perfor-
mances can be seen. Overall, it corroborates that the consistency
issue has no impact on GEV parameter estimation.

Figure 5 compares the estimated circular densities to the theoret-
ical ones. Again, one can see that there is a perfect match, indicat-
ing that, although there is a lack of consistency in the estimation
of the sill and range parameters of GEV Gaussian processes, it
has no impact on the prediction performances for the angular
component.

We now assess the predictive performance of the proposed model
and, more specifically, that associated to the prediction of some
angular quantity over the spatial domain  . As the projected
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FIGURE 2 | Directed acyclic graph for the extreme-angular Bayesian hierarchical model. A double arrow indicates a deterministic relationship
between the two nodes. Squared nodes denote prior distributions.

TABLE 1 | Configuration settings for the simulation study. The angular mean function is set to 𝑚𝜃(𝑠) = {𝑚(1)
𝜃
(𝑠), 𝑚(2)

𝜃
(𝑠)}⊤. For each configuration,

the latent GEV parameter processes 𝜇(⋅), 𝜎(⋅), 𝜉(⋅) were held fixed to Gaussian processes with mean functions 𝑚𝜇(𝑠) = 2 − 3lon(𝑠) − 2lat(𝑠), 𝑚𝜎(𝑠) =
2 + lat(𝑠), 𝑚𝜉(𝑠) = 0.05, sill parameters 0.1,0.5,0.05 and range parameters 1,2,3 respectively.

𝝈2 𝝆 𝒎𝜽,1(𝒔) 𝒎𝜽,2(𝒔) Modality

I: Independent 0.4 0.3 0.5 0 Multimodal
II: Light 0.4 0.3 0.5 2𝜉(𝑠) Multimodal
III: Strong 1.0 0 10 + 0.5𝜇(𝑠) 0 Unimodal
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FIGURE 3 | Evolution of the mean squared error (MSE) with varying number of observations 𝑛 and locations 𝑘 for Configuration II. Top: MSE for
the regression (left), range (middle) parameters and quotient of scale and range (right) of the covariance function of the Gaussian process 𝜇(⋅). Bottom:
MSE for regression parameter (left), range parameter (middle) and correlation parameter (right) of the projected Gaussian process 𝜃(⋅).
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FIGURE 4 | Model checking: extremal component. Comparison between the true GEV parameters and the posterior medians derived from the
MCMC sampler with 𝑘 = 25 locations and 𝑛 = 50 observations for Configuration II. 95% credible intervals are also reported.
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FIGURE 5 | Model checking: angular component. Estimated (solid line) and theoretical (dashed line) circular distribution for locations with a low
(left), medium (middle) and large (right) value of the GEV shape parameter 𝜉. Results are obtained from Configuration II, with 𝑘 = 25 locations and
𝑛 = 50 observations.

Gaussian process may be multimodal, some care is needed in
defining the Bayesian point estimate, and, in the sequel, we
will focus on the (main) posterior mode for the angle. Figure 6
shows prediction maps for Configuration II. With this setting, the
predictive posterior distribution is bimodal and may introduce
spatial discontinuities in the posterior modes. To be more spe-
cific, there is a cutoff value for the shape parameter for which
if exceeded, the modal direction is top-right and bottom-right
otherwise. The left panel of Figure 6 illustrates the relationship
between predicted angles and the shape parameter as well as the
aforementioned cutoff behavior. The middle panel is similar to
the previous one except that predicted quantiles of order 0.95 are
now overlaid. Since GEV quantiles are a function of the GEV
location, scale, and shape parameters, overall, the same behav-
ior can be seen. However, due to the analytic expression for GEV
quantiles, there is no cut-off behavior as the one stated previously.
For instance, estimates in the outermost bottom-right sub-region
are lower due to the contribution of the location parameter
as opposed to the general behavior “bottom–right direction for
small return levels.”

The right panel of Figure 6 shows the relationship between pre-
dicted angles and the angular dispersion 𝑠 =

√
1 − ||𝑥𝑛||2, with

𝑥𝑛 the empirical (Cartesian) mean of the angular data, that is,
{𝑥𝑖 = (cos 𝜃𝑖, sin 𝜃𝑖) ∶ 𝑖 = 1, . . . , 𝑛}. The angular dispersion satis-
fies 𝑠 ∈ [0, 1], where 0 corresponds to a degenerate distribution,
that is, the angular distribution puts all its mass on a specific
angle, and 1 corresponds to the uniform distribution on [0, 2𝜋).
One can see that the two modes have different impact. More
precisely, one can see that the mode associated to the top-right
direction is the preponderant one with typically large disper-
sion, whereas that associated to the bottom-right direction only
dominates after a rare cut-off exceedance and has generally less
dispersion.

5 | Application

The data, freely available from Météo-France, consist of annual
maxima of wind speeds and their associated wind directions
observed at a height of 10m for 𝑘 = 110 weather stations in
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FIGURE 6 | Prediction maps for Configuration II with 𝑛 = 100 observations and 𝑘 = 50 locations. All predictions are derived from the predictive
posterior distribution (median for extreme related quantities and angular mode for the main direction). Left: Prediction of the main direction and GEV
shape parameter. Middle: Prediction of the main direction and GEV quantiles of order 0.95. Right: prediction of the main direction and circular standard
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FIGURE 7 | Wind data in continental France. From left to right: study region and locations of the weather stations (train set: black circle; test set:
gray triangle); annual maxima wind speed time series and empirical distributions of the direction of extreme wind speed at two selected stations: Calais
(orange) and Chambéry (green).

France and recorded from 1994 to 2023. To assess the perfor-
mance of the model, the dataset is split into a train and a test set.
Figure 7 plots the spatial distribution of the weather stations, the
annual maxima wind speed time series, and the empirical dis-
tributions of wind directions associated to the annual maxima
for two selected stations. One can see that annual wind speed
maxima at Calais have a lower amplitude than in Chambéry and
appear to have a single main direction (South-West), while that
at Chambéry may originate from two different directions (North
and South-South-West). As expected, the spatial distribution of
extreme wind speeds is not stationary over France; neither is
that for wind directions. Modeling such nonstationary behavior
is challenging, but it is hoped that thanks to its flexibility, the use
of Model (5) will be able to cope with those two different types of
nonstationarity.

To assess prediction performance, a sensible performance met-
ric is the Widely Applicable Information Criterion (WAIC)
(Watanabe 2013) that, similarly to Akaike Information Criterion
(Akaike 1974), penalizes model complexity, but is more rele-
vant when performing model selection in a Bayesian hierarchical
setting. Table 2 displays performance scores, computed on the
train set, for several competitive models with a varying degree
of complexity. Note that in addition to geophysical covariates
such as longitude, latitude, and elevation, some models may
also consider extreme wind speed quantiles for the modeling
of wind speed direction. Again, the rationale for this type of
dependence is that it may be sensible to assert that the largest
extreme wind speeds are attached with a very specific wind
direction.

8 of 14 Environmetrics, 2025
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TABLE 2 | Widely Applicable Information Criterion (WAIC) for selected models (computed on the train set only). All models have 𝑚𝜉(𝑠) = 𝛽0. The
quantity 𝑞𝑝(𝑠) denotes the quantile of order 𝑝 of the GEV distribution at location 𝑠.

WAIC𝜽 WAIC𝜼 WAIC

Model 0 13,693 16,343 30,036
𝑚𝜇(𝑠) = 𝛽0 + 𝛽1alt(𝑠)
𝑚𝜎(𝑠) = 𝛽0 + 𝛽1lon(𝑠) + 𝛽2lat(𝑠) + 𝛽3alt(𝑠)
𝑚

(1)
𝜃
(𝑠) = 𝛽0 + 𝛽1lon(𝑠) + 𝛽2lat(𝑠) + 𝛽3alt(𝑠)

𝑚
(2)
𝜃
(𝑠) = 𝛽0 + 𝛽1lon(𝑠) + 𝛽2lat(𝑠) + 𝛽3alt(𝑠)

Model 1 Model 0 with 13,791 16,581 30,372
𝑚

(1)
𝜃
(𝑠) = 𝛽0 + 𝛽1lon(𝑠) + 𝛽2lat(𝑠) + 𝛽3alt(𝑠)+

𝛽4𝜇(𝑠) + 𝛽5𝜎(𝑠)
𝑚

(2)
𝜃
(𝑠) = 𝛽0 + 𝛽1lon(𝑠) + 𝛽2lat(𝑠) + 𝛽3alt(𝑠)+

𝛽4𝜇(𝑠) + 𝛽5𝑞0.95(𝑠)
Model 2 Model 0 with 12,925 16,412 29,337

𝑚
(1)
𝜃
(𝑠) = 𝛽0 + 𝛽1lon(𝑠) + 𝛽2lat(𝑠) + 𝛽3alt(𝑠)+

𝛽4𝑞0.95(𝑠) + 𝛽5𝑞0.99(𝑠)
Model 3 Model 2 with 12,923 16,352 29,275

𝑚
(1)
𝜃
(𝑠) = 𝛽0 + 𝛽1𝑞0.95(𝑠) + 𝛽2𝑞0.99(𝑠)

Model 4 Model 2 with 12,913 16,364 29,277
𝑚𝜇(𝑠) = 𝛽0

𝑚𝜎(𝑠) = 𝛽0 + 𝛽1lat(𝑠) + 𝛽2alt(𝑠)
Model 5 Model 3 with 12,948 16,418 29,366

𝑚𝜇(𝑠) = 𝛽0

𝑚𝜎(𝑠) = 𝛽0 + 𝛽1lat(𝑠) + 𝛽2alt(𝑠)
Model 6 Model 3 with 12,898 16,378 29,277

𝑚
(1)
𝜃
(𝑠) = 𝛽0 + 𝛽1𝑞0.5(𝑠) + 𝛽2𝑞0.95(𝑠) + 𝛽3𝑞0.99(𝑠)

Model 7 Model 3 with 13,108 16,387 29,495
𝑚

(2)
𝜃
(𝑠) = 𝛽0 + 𝛽1lon(𝑠) + 𝛽2lat(𝑠) + 𝛽3alt(𝑠) + 𝛽4𝑞0.5(𝑠)

Although a large number of models have been considered, and
to save space, results are only presented for a limited number
of configurations. Model 0 assumes independence between the
extreme value process {𝜂(𝑠) ∶ 𝑠 ∈ } and the angular process
{𝜃(𝑠) ∶ 𝑠 ∈ } while all the other models assume dependence.
One can see that the independent model performs best in pre-
dicting extreme wind speeds but is surprisingly poor in predicting
wind directions. Hence, and as already mentioned previously, it
seems that the knowledge of extreme wind speeds may bring rel-
evant information for the prediction of extreme wind direction.
Overall, Model 3 appears to be the most accurate as it is almost
as efficient as the independent model in predicting wind speeds
while ensuring good predictive performances for wind directions.
This model makes use of the 20- and 100-year return levels.

A specificity of any Bayesian analysis is that results may be
strongly influenced by the definition of the prior distributions.
This is even more true in our context since, as suggested by Baner-
jee et al. (2014) and as a result of the lack of consistency previ-
ously mentioned, informative priors should be used for the sill
and range parameters of the covariance functions in order to yield
non-degenerate marginal posterior distributions. Figure 8 shows
how estimates changes with the prior definition—ranging from

uninformative up to very informative priors. For our application,
the results are conclusive: estimates are almost not impacted by
the prior choice. Indeed, the left panel shows that the marginal
posterior for the cross-correlation parameter 𝜌𝜃 is almost identi-
cal whatever is the prior distribution. Similar results were found
for the other parameters. The right panel of Figure 8 further con-
firms this statement as the posterior predictive distribution for
the 20-year return level remains almost unchanged regardless
of the prior distribution. We can therefore be confident in say-
ing that, for our application, the posterior distribution is mainly
driven by the data and not by the prior choices we made.

Figure 9 assesses the goodness of fit for Model 3. The two left-
most panels compare predicted values and observed wind speeds
for the two highlighted stations of Figure 7. Although some bias
is apparent, predictions are rather good. Better performances are
likely to be obtained by using additional geophysical covariates,
but unfortunately, such additional covariates were not provided
in the data set, which was limited to longitude, latitude, and alti-
tude only. The right panel compares the kernel density estimates
of extreme wind speed directions and the fitted angular densities
for these two locations. Predictions appear to be accurate, and one
can see that our model is able to cope with both unimodal (Calais)
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and bi-modal (Chambéry) distributions, even if the South mode
of the latter is slightly shifted toward the East. Similar results were
obtained for all the other stations.

Using Algorithm 1, we evaluate the conditional and uncondi-
tional predictive performances of Model 3 on both the train and
test sets. Performance is assessed using the root mean squared
error for wind speeds and the mean angular distance for wind
directions. The angular distance is defined as 𝛼(𝜃1, 𝜃2) = 1 −
cos(𝜃1 − 𝜃2) (Grimit et al. 2006). Table 3 summarizes the empiri-
cal distribution of these two performance metrics. For the test set,
predictions were made conditionally on the observed data at the
training stations for each year, leading to one prediction per year
for the angular component. This contrasts with unconditional
predictions that are time-independent, that is, for each station, we
use a single point estimate, for example, posterior median/mode,

whatever the year is. Although not directly comparable, this dif-
ference explains why there is a performance gap between uncon-
ditional and conditional predictions for the angular component
and no significant changes for the extremal part. Unsurprisingly,
unconditional predictions shows worse results than conditional
ones. We can see that 75% of the mean angular distances values
are below 0.79 and 0.36 for the train and test sets respectively.
This result can be considered as rather good since a uniform pre-
diction on [0, 2𝜋) gives a mean absolute distance of 1. Similarly,
only 25% of the RMSE values exceed 12.4 km/h and 10 km/h for
the train and test sets respectively. However, the 97.5% quantiles
and the maximum values for both metrics indicate that there are
some stations where predictions are poor. Maybe not surprisingly,
the worse performances were obtained in the South–East part
of France where the spatial distribution is expected to change
abruptly.

10 of 14 Environmetrics, 2025
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TABLE 3 | Summary statistics for the distribution of Root Mean Squared Errors (RMSE) and Mean Angular Distance (MAD) between pointwise
conditional prediction and observed values computed on the train and test sets. 𝑄𝑝 denotes the empirical quantile of order 𝑝 ∈ [0, 1].

Minimum 𝑸0.025 𝑸0.25 𝑸0.5 Mean 𝑸0.75 𝑸0.975 Maximum

Train set (unconditional predictions)
MAD 0.10 0.11 0.18 0.26 0.46 0.79 1.35 1.45
RMSE 2.1 2.1 4.9 7.2 9.4 12.4 26.0 28.6
Test set (conditional predictions)
MAD 0.05 0.08 0.14 0.20 0.33 0.36 1.16 1.25
RMSE 2.2 2.4 4.6 6.4 8.9 10.5 25.7 42.6

TABLE 4 | Posterior medians and 95% credible intervals (in parenthesis) for Model 3.

Generalized extreme value layer

𝜷0 𝜷lon 𝜷lat 𝜷alt 𝝉 𝝀

𝜇 95(93,97) — — 2.4(−2.4,7.3) 78(60,102) 8(1,20)

𝜎 2(−13,18) −0.3(−0.7,0.1) 0.19(−0.15,0.53) 2.9(1.2,4.9) 6.5(4,11) 104(57,184)

𝜉 −0.07(−0.1,0) — — — 0.01(0.00,0.01) 127(75,225)

Angular layer

𝑚
(1)
𝜃

𝛽0 𝛽q(0.95) 𝛽q(0.99) 𝜏 𝜆 𝜌𝜃

−1.7(−3,−0.4) −0.20(−0.26,−0.15) 0.18(0.14,0.23) 0.6(0.5,0.7) 45(41,49) −0.3(−0.4,−0.2)

𝑚
(2)
𝜃

𝛽0 𝛽lon 𝛽lat 𝛽alt

8.4(7.1,9.7) 0.03(0.01,0.05) −0.19(−0.22,−0.16) −0.2(−0.3,0.0)

Table 4 presents the parameter estimates for Model 3 using
uninformative priors across all parameters. Interestingly, the
sum between the parameter estimates associated to the 20- and
100-year return levels varies around 0, that is, 𝛽𝑞(0.95) + 𝛽𝑞(0.99) ≈ 0.
As 𝑞(𝑝1) − 𝑞(𝑝2) = 𝜎𝑐(𝑝1, 𝑝2, 𝜉), where 𝑞(𝑝) is the quantile func-
tion of a GEV(𝜇, 𝜎, 𝜉) and 𝑐(𝑝1, 𝑝2, 𝜉) only depends on 𝑝1, 𝑝2 and
𝜉, extreme wind speed direction appear to depend mainly on the
spread, skewness, and higher order moments of extreme wind
speeds rather than their central tendency. This behavior was
shared with all the models we considered and whose mean func-
tion of the projected Gaussian process makes use of at least two
return levels.

The top row of Figure 10 gives predictions maps from Model 3.
One can see that the shape parameter appears to be rather
constant over France apart from the Atlantic coastline and the
South–East part of France. The 100-year return levels are larger
in the most Western part, that is, Western part of Brittany and the
Landes, and in mountainous regions, that is, the South-ast part of
France and especially the French Alps. Overall, the wind direc-
tion dispersion is rather limited. One exception is the South-East
part of France where the angular dispersion is much larger
indicating that wind speed directions may vary roughly over
space. Further, as expected, one can see that extreme wind event
appears to come from West but tends to change smoothly to the
South-West direction for the Northern part of France. Again the
South-East part of France and the Alps show a completely differ-
ent behavior. For the former, extreme wind speed events appear
to come from West-North and is in agreement with the obser-
vational study of Obermann et al. (2018). The behavior in the

French Alps is more erratic and may be a consequence that the
wind trajectory has to follow the valley in mountainous regions.

The bottom row of Figure 10 is similar to the top row except that
results are obtained from Model 0, which assumes independence
between extreme magnitudes and angles. The aim of such plots is
to emphasize the impact of assuming dependence between wind
direction and wind speeds. Clearly, the major differences happen
in the South-East part of France where Model 3 tends to predict
larger wind speeds than Model 0. As far as wind direction is of
concern, Model 0 produces unrealistically smooth surfaces in this
region since the wind direction should be highly influenced with
the valley orientations. Model 3 in this regard seems more realis-
tic and confirms the results obtained in Table 2.

6 | Conclusion

Since many environmental processes are associated with an
angular component, this paper proposed a Bayesian hierarchi-
cal model to handle such features by allowing the joint modeling
of extremes and angular components. An inferential framework
has been proposed whose performances were assessed through a
simulation study. As an aside, the lack of consistency for some
Gaussian processes dependence parameters already found in the
literature has been numerically illustrated, and it has been shown
that, fortunately, this issue has no impact on the prediction of
return levels. An application to extreme wind speeds and direc-
tion in continental France was conducted. Results show that
extreme wind speeds in the Atlantic part of France are mainly
dominated by West directions. A different behavior is seen for the
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FIGURE 10 | Model 3 (top) and Model 0 (bottom) pointwise prediction maps of the wind direction and the GEV shape parameter (left), 100-year
return level (middle) and the wind direction dispersion (right). For each plot, the arrows points to the (major) mode of the predictive posterior distri-
bution.

Mediterranean part of France where extreme winds arise from
multiple winds patterns, that is, North and South directions. This
leads to a multimodal angular distribution, whose low-scale spa-
tial variations are harder to recover from a large-scale model.
Probably accurate modeling in this region would require a much
more spatially dense data set.

Although this paper illustrates the usefulness of the proposed
model, it has some limitations. First, our model applies to point-
wise block-maxima data while practitioners may want to use
exceedances above a threshold as in the original work of Coo-
ley et al. (2007). Extending the proposed model to peaks over
threshold should not be too complicated and will require to
switch the GEV distribution for the Generalized Pareto dis-
tribution and to define a spatial model for the probability of
exceeding the spatial threshold {𝑢(𝑠) ∶ 𝑠 ∈ }. Second, the pro-
posed model is time stationary and cannot handle situations
where there is a clear impact of climate change. An extension
to the nonstationary case may be considered using nonstation-
ary covariance structures, time-dependent covariates, or even
time-dependent model parameters. Second, as a consequence
of the conditional independence assumption, areal quantities
such as the total amount of rainfall in a subdomain are not
possible. To overcome this problem, the conditional indepen-
dence assumption should be relaxed and other extreme-value
models should be considered, such as max-stable (de Haan and

Fereira 2006; Schlather 2002) or r-Pareto processes (Thibaud and
Opitz 2015), max-mixture (Wadsworth and Tawn 2012; Engelke
et al. 2019; Krupskii et al. 2018) or max-infinitely divisible pro-
cesses (Padoan 2013)—see Huser and Wadsworth (2022) for a
comparison of those models. The use of those processes is, how-
ever, challenging since the likelihood associated to these pro-
cesses is extremely CPU demanding and one has to develop an
elegant framework to overcome this computational burden.

Data Availability Statement

The data that support the findings of this study are made avail-
able by Météo-France. These data were derived from the following
resources available in the public domain: “Observations du réseau sol de
France” https://donneespubliques.meteofrance.fr/?fond=produit&id_
produit=93&id_rubrique=32.
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Appendix A

Gibbs Sampler

Inference for our latent extreme–angular Bayesian hierarchical model
may be performed using a Gibbs sampler, whose steps we now
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describe. To ease notations, we define𝑹𝑡 = {𝑅𝑡(𝑠1), . . . , 𝑅𝑡(𝑠𝑘)} and 𝝁𝑡 =
{𝜇𝑡(𝑠1), . . . , 𝜇𝑡(𝑠𝑘)} with similar notations for the GEV scale and shape
parameters. Given a current value of the Markov chain

𝚼𝑡 = (𝑹𝑡,𝝁𝑡,𝝈𝑡, 𝝃𝑡, 𝜌𝜃,𝑡, 𝜏𝜇,𝑡, 𝜏𝜃,𝑡, 𝜏𝜎,𝑡, 𝜏𝜉,𝑡,

𝜆𝜃,𝑡, 𝜆𝜇,𝑡, 𝜆𝜎,𝑡, 𝜆𝜉,𝑡,𝜷𝜃,𝑡,𝜷𝜇,𝑡,𝜷𝜎,𝑡,𝜷𝜉,𝑡)

the next state 𝚼𝑡+1 of the chain is obtained as follows:

Step 1: Updating the GEV parameters at each site

Each component of 𝜇(s) = {𝜇(𝑠1), . . . , 𝜇(𝑠𝑘)} is updated singly according
to the following scheme. Generate a proposal 𝜇𝑝(s) from a symmetric ran-
dom walk and compute the acceptance probability

𝛼{𝜇(s), 𝜇𝑝(s)}

= min
{

1, 𝑟1{𝜇(s), 𝜇𝑝(s)}𝑟2{𝜇(s), 𝜇𝑝(s)}𝑟3{𝜇(s), 𝜇𝑝(s)}
}

with

𝑟1{𝜇(s), 𝜇𝑝(s)} =
𝑘∏

𝑗=1

𝜋{𝜂(𝑠𝑗 )|𝜇𝑝(𝑠𝑗 ), 𝜎(𝑠𝑗 ), 𝜉(𝑠𝑗 )}
𝜋{𝜂(𝑠𝑗 )|𝜇(𝑠𝑗 ), 𝜎(𝑠𝑗 ), 𝜉(𝑠𝑗 )}

𝑟2{𝜇(s), 𝜇𝑝(s)} =
𝑛∏

𝑖=1

𝜋{𝑅𝑖(s), 𝜃𝑖(s)|𝜇𝑝(s), 𝜎(s), 𝜉(s),𝜷𝜃 , 𝜌𝜃, 𝜏𝜃}
𝜋{𝑅𝑖(s), 𝜃𝑖(s)|𝜇(s), 𝜎(s), 𝜉(s),𝜷𝜃 , 𝜌𝜃, 𝜏𝜃}

𝑟3{𝜇(s), 𝜇𝑝(s)} =
𝜋(𝝁𝑝|𝜷𝜇, 𝜏𝜇, 𝜆𝜇)
𝜋(𝝁|𝜷𝜇, 𝜏𝜇, 𝜆𝜇)

where 𝑟1 is a ratio of GEV likelihoods, 𝑟2 is a ratio of projected Gaussian
likelihoods, and 𝑟3 is a ratio of multivariate Gaussian likelihoods. With
probability 𝛼{𝜇(s), 𝜇𝑝(s)}, the 𝜇(s) component of 𝚼𝑡+1 is set to 𝜇𝑝(s); oth-
erwise, it remains at 𝜇(s). The scale and shape parameters are updated
similarly.

Due to possible components related to 𝜇, 𝜎, or 𝜉, the design matrix 𝐷𝜃

(related to the regression parameter 𝛽𝜃) needs to be updated each time
one of those parameters is changed.

Step 2: Updating the radius at each site and replicating

Components of R𝑖 = {𝑅𝑖(𝑠1), . . . , 𝑅𝑖(𝑠𝑘)}, 𝑖 = 1, . . . , 𝑛, are updated one
by one according to the following scheme. Generate a proposal 𝑅𝑝,𝑖(𝑠𝑗 )
from a log-normal distribution and accept with probability

𝛼{𝑅𝑖(𝑠𝑗 ), 𝑅𝑝,𝑖(𝑠𝑗 )}

= min
{

1,
𝜋(R𝑝,𝑖,𝜽𝑖|𝝁,𝝈, 𝝃,𝜷𝜃 , 𝜏𝜃 , 𝜌𝜃, 𝜆𝜃)
𝜋(R𝑖,𝜽𝑖|𝝁,𝝈, 𝝃,𝜷𝜃 , 𝜏𝜃 , 𝜌𝜃, 𝜆𝜃)

}
that is, a ratio of radial Gaussian likelihoods, based on (4).

Step 3: Updating the angle regression parameters

Due to the use of conjugate priors,𝜷𝜃 is drawn directly from a multivariate
Gaussian distribution having covariance matrix and mean vector

{(Σ∗
𝜃
)−1 + 𝑛𝐷𝑇

𝜃
Σ−1

𝜃
𝐷𝜃}−1, {(Σ∗

𝜃
)−1 + 𝐷𝑇

𝜃
Σ−1

𝜃
𝐷𝜃}−1

×

{
(Σ∗

𝜃
)−1𝜇∗

𝜃
+ 𝐷𝑇

𝜃
Σ−1

𝜃

𝑛∑
𝑖=1

X𝑖

}

where 𝜇∗
𝜃

and Σ∗
𝜃

are the mean vector and covariance matrix of the
prior distribution of 𝜷𝜇 , 𝐷𝜃 is the design matrix related to the regression
coefficients 𝜷𝜃 , X𝑖 =

(
R𝑖 cos𝜽𝑖 R𝑖 sin𝜽𝑖

)⊤ and Σ𝜃 the covariance matrix
of X𝑖.

Step 4: Updating the GEV regression parameters

Due to the use of conjugate priors,𝜷𝜇 is drawn directly from a multivariate
Gaussian distribution having covariance matrix and mean vector

{(Σ∗
𝜇
)−1 + 𝐷𝑇

𝜇
Σ−1

𝜇
𝐷𝜇}−1, {(Σ∗

𝜇
)−1 + 𝐷𝑇

𝜇
Σ−1

𝜇
𝐷𝜇}−1{(Σ∗

𝜇
)−1𝜇∗

𝜇
+ 𝐷𝑇

𝜇
Σ−1

𝜇
𝝁}

where 𝜇∗
𝜇

and Σ∗
𝜇

are the mean vector and covariance matrix of the prior
distribution for 𝜷𝜇 , 𝐷𝜇 is the design matrix related to the regression coeffi-
cients 𝜷𝜇 and Σ𝜇 the covariance matrix of 𝝁. Again the regression param-
eters for the GEV scale and shape parameters are updated similarly.

Step 5: Updating the sill parameters of the covariance function

Due to the use of conjugate priors, 𝜏𝜇 is drawn directly from an inverse
Gamma distribution whose shape and rate parameters are

𝑘

2
+ 𝜅∗

𝜏𝜇
, 𝜃∗

𝜏𝜇
+ 1

2
𝜏𝜇(𝝁 − 𝐷𝜇𝜷𝜇)𝑇Σ−1

𝜇
(𝝁 − 𝐷𝜇𝛽𝜇)

where 𝜅∗
𝜏𝜇

and 𝜃∗
𝜏𝜇

are, respectively, the shape and scale parameters of the
inverse Gamma prior distribution. The sill parameters of the covariance
function for the GEV scale and shape parameters are updated similarly.

Step 6: Updating the projected Gaussian parameters

To update the parameter 𝜏𝜃 , we generate a proposal 𝜏𝜃,𝑝 from a log-normal
distribution and compute the acceptance probability

𝛼(𝜏𝜃, 𝜏𝜃,𝑝) = min

{
1,

𝜋(R,𝜽|𝝁,𝝈, 𝝃,𝜷𝜃 , 𝜏𝜃,𝑝, 𝜌, 𝜆𝜃)𝜋(𝜏𝜃,𝑝|𝜅∗
𝜏𝜃

, 𝜃∗
𝜆𝜃

)

𝜋(R,𝜽|𝝁,𝝈, 𝝃,𝜷𝜃 , 𝜏𝜃,𝑡, 𝜌, 𝜆𝜃)𝜋(𝜏𝜃,𝑡|𝜅∗
𝜏𝜃

, 𝜃∗
𝜆𝜃

)
𝜏𝜃,𝑝

𝜏𝜃

}

a ratio of projected Gaussian likelihood times the ratio of the prior densi-
ties with a correction due to the use of nonsymmetric proposal distribu-
tion and where 𝜅∗

𝜏𝜃
and 𝜃∗

𝜆𝜃

are respectively the shape and scale parame-
ters of the Gamma prior distribution. With probability 𝛼(𝜏𝜃, 𝜏𝜃,𝑝), the 𝜏𝜃

component of 𝚼𝑡+1 is set to 𝜏𝜃,𝑝; otherwise, it remains at 𝜏𝜃 . The param-
eter 𝜆𝜃 is updated similarly as well as the parameter 𝜌𝜃 except that, for
the latter parameter, we use the following symmetric proposal distribu-
tion: 𝜌𝑝 ∼ 𝜌𝜃 + 𝑈 (−𝜖𝜌, 𝜖𝜌) and consequently no correction like 𝜌𝑝∕𝜌𝜃 is
required.

Step 7: Updating the range parameters of the covariance function

To update the parameter 𝜆𝜇 , we generate a proposal 𝜆𝜇,𝑝 from a
log-normal distribution and compute the acceptance probability

𝛼(𝜆𝜇, 𝜆𝜇,𝑝) = min

{
1,

𝜋(𝝁|𝜏𝜇, 𝜆𝜇,𝑝,𝜷𝜇)
𝜋(𝝁|𝜏𝜇, 𝜆𝜇,𝜷𝜇)

(
𝜆𝜇,𝑝

𝜆𝜇

)𝑘∗
𝜆𝜇
−1

exp

(
𝜆𝜇 − 𝜆𝜇,𝑝

𝜃∗
𝜆𝜇

)
×

𝜆𝜇,𝑝

𝜆𝜇

}

a ratio of multivariate Normal densities times the ratio of the prior densi-
ties and that of the proposal densities and where 𝜅∗

𝜆𝜇

and 𝜃∗
𝜆𝜇

are respec-
tively the shape and the scale parameters of the Gamma prior distribution.
With probability 𝛼(𝜆𝜇, 𝜆𝜇,𝑝), the 𝜆𝜂 component of 𝚼𝑡+1 is set to 𝜆𝜇,𝑝; oth-
erwise it remains at 𝜆𝜇 . The range parameters related to the scale and
shape GEV parameters are updated similarly. If the covariance family has
a shape parameter like the powered exponential or the Whittle–Matérn
covariance functions, this is updated in the same way.
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