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Table 8.3. Standard errors are based on the estimate & = 1.1.
The estimate for the intercept corresponding to all factors at
their lowest level is 3410 x 1075. Bearing in mind that the
analysis is performed here on the reciprocal scale and that a large
positive parameter corresponds to a small claim, we may deduce the
following. The largest average claims are made by policyholders in
the youngest four age groups, i.e. up to age 34, the smallest average
claims by those aged 35-39, and intermediate claims by those aged
40 and over. These effects are in addition to effects due to type of
vehicle and vehicle age. The value of claims decreases with car age,
although not linearly. There are also marked differences between
the four car groups, group D being the most expensive and group
C intermediate. No significant difference is discernible between car
groups A and B.

It should be pointed out that the parameter estimates given here
are contrasts with level 1. In a balanced design the three sets of
estimates corresponding to the three factors would be uncorrelated
while the correlations within a factor would be 0.5. Even where, as
here, there is considerable lack of balance, the correlations do not
deviate markedly from these values.

It is possible to test and quantify the assertions made above by
fusing levels 1-4, levels 6-8 of PA and levels 1 and 2 of CG. The
deviance then increases to 129.8 on 116 d.f., which is a statistically
insignificant increase.

The preceding analysis is not the only one possible for these
data. In fact a multiplicative model corresponding to a logarithmic
link function would lead to similar qualitative conclusions. As is
shown in Chapter 10, the data themselves support the reciprocal
model better but only marginally so, and it might be argued
that quantitative conclusions for these data would be more readily
stated and understood for a multiplicative model.

8.4.2 Clotting times of blood

Hurn et al. (1945) published data on the clotting time of blood,
giving clotting times in seconds (y) for normal plasma diluted
to nine different percentage concentrations with prothrombin-free
plasma (u); clotting was induced by two lots of thromboplastin.
The data are shown in Table 8.4. A hyperbolic model for lot 1 was
fitted by Bliss (1970), using an inverse transformation of the data,
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and for both lots 1 and 2 using untransformed data. We analyse
both lots using the inverse link and gamma errors.

Initial plots suggest that a log scale for u is needed to produce
inverse linearity, and that both intercepts and slopes are different
for the two lots. This claim is confirmed by fitting the following
model sequence:

Model Deviance d.f.
1 7.709 17
X 1.018 16
L+X 0.300 15
L+ LX 0.0294 14

Here £ = logu and L is the factor defining the lots. Clearly
all the terms are necessary and the final model produces a mean
deviance whose square root is 0.0458, implying approximately a
4.6% standard error on the y-scale. The two fitted lines, with
standard errors for the parameters shown in parentheses, are

lot 1:  4~!=—0.01655(£0.00086) + 0.01534(0.00143)z
lot 2: A~ = —0.02391(£0.00038) + 0.02360(-0.00062)x

The plot of the Pearson residuals (y — fi)/j against the linear
predictor % is satisfactory, and certainly better than either (i) the
use of constant variance for Y where the residual range decreases
with # or (ii) the use of constant variance for 1/Y where the
analogous plot against £ shows the range increasing with . Note
that constant variance for 1/Y implies (to the first order) var(Y) x
pt. Thus the assumption of gamma errors (with var(Y) o p?)
is ‘half-way’ between assuming var(Y) constant and var(1/Y)
constant.

The estimates suggest that the parameters for lot 2 are a
constant multiple (about 1.6) of those for lot 1. If true this
would mean that pm, = ku,, where the suffix denotes the lot.
This model, though not a generalized linear model, has simple
maximum-likelihood equations for estimating «, 3 and k where

u=1/ny, 7, = a+ fx,
By =kpy.
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Table 8.4 Mean clotting times in seconds (y) of
blood for nine percentage concentrations of normal
plasma (u) and two lots of clotting agent

Clotting time

u Lot 1 Lot 2
5 118 69
10 58 35
15 42 26
20 35 21
30 27 18
40 25 16
60 21 13
80 19 12
100 18 12

These are equivalent to fitting a and 8 to data y; and y,/k,
combined with the equation > (y2/p1 — &) = 0. The resulting
fit gives & = 0.625 with deviance = 0.0332 and having 15 d.f.
Comparing this with the fit of separate lines gives a difference
of deviance of 0.0038 on one degree of freedom against a mean
deviance of 0.0021 for the more complex model. The simpler model
of proportionality is not discounted, with lot 2 giving times about
five-eighths those of lot 1.

8.4.3 Modelling rainfall data using two generalized linear models

Histograms of daily rainfall data are usually skewed to the right
with a ‘spike’ at the origin. This form of distribution suggests
that such data might be modelled in two stages, one stage being
concerned with the pattern of occurrence of wet and dry days,
and the other with the amount of rain falling on wet days. The
first stage involves discrete data and can often be modelled by
a stochastic process in which the probability of rain on day ¢
depends on the history of the process up to day ¢t — 1. Often,
first-order dependence corresponding to a Markov chain provides
a satisfactory model. In the second stage we require a family of
densities on the positive line for the quantity of rainfall. To be
realistic, this family of densities should be positively skewed and
should have variance increasing with gz. The gamma distribution



