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Linear models (v1)

Remark. This exercise sheet puts emphasis on the theoretical properties of the linear model
Y=z B+e, & S N0,0Y), i=1,...,n

Don’t expect much concrete stuffs here. .. No worries, we’ll cover that in due time during Labs!
Further, the framework assumed throughout this document is simplified as it completely ignores

the randomness of the covariates x;. A more rigorous treatment should do all the computations

conditionned on those x; as emphasized by the alternative definition covered in the lecture

E[Y | z] =2'B.

Fortunately, results presented here are still valid (but we need mutual independence between
the z; and &; though)

==
Exercise 1 (The hat matrix ’.’:).

a) Show that the “hat matrix” is H = X (XTX)f1 X7, and that we have H = H' = H>.
b) Show that H(Id — H) =0 and HX = X.

¢) Give a closed form expression for the prediction of Y; in terms of the matrix H and the response
vector Y = (Y1,...,Y,)". Deduce why the i-th diagonal element of H, say h;, can be seen as
a leverage measure?

d) Show that tr(H) = p, where p is the number of parameter to be estimated in our linear model.
Note: We will thus say that the model has p degrees of freedom.
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Exercise 2 (Variance estimation).

a) Find the maximum likelihood estimator for 2.

b) Is it biased? If yes, give an unbiased version.
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Exercise 3 (Residual properties ’.’:). In this exercise we focus on the residuals R; = Y; — Y; and
we let R= (Ry,...,R,)".

a) Show that X' R = 0 and deduce that ;' | R; = 0.

b) What do you think about people claiming that their fitted linear model (from least squares) is
good since the mean error is 0.

¢) Show that 3% Y;R; = 0. Give a geometrical interpretation.



d) Show that R = (Id — H)e, where Id is the identity matrix (with desired dimension). Deduce
that Var(R) = o*(Id — H).

e) What can you say about the residuals R;?
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Exercise 4 (Leave one out ?E) We often need to evaluate the performance of a predictive
model, for example to do model selection. In a regression setting, it is common pradctice to
use the residual sum of square (RSS in the lecture) as performance measure. However, strictly
speaking it is not a predictive performance measure as we use Y; in the fitting stage to get a
prediction Y;. It would be much more sensible to see what happens when we predict Y; without
using it in the fitting stage. This is the leave one out principle. Hence we rather focus on the
predictive residual sum of squares

n

PRSS =Y (Vi - YM)Q ,

i=1
where Y[Z-] is the prediction of Y; obtained when the model is fitted without Y;.

a) Let ff[i] the MLE where the ¢-th observation has been discarded from the fitting stage. Show
that

p T -1
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where X is the design matrix, z; its i—th row and § the MLE (obtained from all observations).
Hint: You’'ll probably need to use the Sherman—Morisson formula
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b) Deduce that
o _ 2= b Vil
. 1 — hii '

¢) Finally show that

N\ 2
(Y, -,
PRSS = - -

and explain how one can benefit from the above expression compare to the original one?
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Exercise 5 (Linear smoother and Ridge regression). A predictive model is said to be a linear
smoother if Y = SY where S is the smoother matrix. Clearly, the linear model is a linear smoother

with S = H.
Let’s focus on the following optimization problem

IB) = (Y = XB) (Y = XB)+ A\B'B,

for some fixed value of A > 0 .



a) Show that the solution of this optimization problem is a linear smoother and give an expression
for its smoothing matrix (that we will denote S(A)).

b) What is S(A) as A = 07 And when A — oo ?

¢) Show that S(\) = UDUT where D is a diagonal matrix and U is the orthogonal matrix of the
SVD of X, ie., X =UDVT.

d) Deduce that
p d2
j

tr{S(\)} = Z Y

and that the degrees of freedom decrease as A increases. Comment.
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