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Definition 1. The process {η(x) : x ∈ X} is said to be
max-stable if for all n ≥ 1 there exist continuous normalizing
functions an(·) > 0 and bn(·) ∈ R such that

{

maxi=1,...,n ηi(x)− bn(x)

an(x)
: x ∈ X

}

d
= {η(x) : x ∈ X}

where η1, . . . , ηn are independent copies of the process
{η(x) : x ∈ X}.

Remark. Throughout this talk we will assume that X ⊂ R
d,

d ≥ 1, is compact and that all stochastic processes have
continuous sample paths.
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Theorem 1. (de Haan and Fereira, 2006)
Let {Xi(x) : x ∈ X , i ≥ 1} be a sequence of independent copies
of a stochastic process {X(x) : x ∈ X}. If there exist sequences
of normalizing functions {cn(x) > 0: x ∈ X , n ≥ 1} and
{dn(x) ∈ R : x ∈ X , n ≥ 1} then, provided the limiting process is
non degenerate,

{

maxi=1,...,nXi(x)− dn(x)

cn(x)
: x ∈ X

}

d
−→ {η(x) : x ∈ X},

as n → ∞, it has to be a max-stable process.

� The finite dimensional distributions are multivariate extreme
value distributions and, in particular, η(x) ∼ GEV, x ∈ X .

� If {η(x) : x ∈ X} has unit Fréchet margins, i.e.,
Pr{η(x) ≤ z} = exp(−1/z), z > 0, we say that it is a simple
max-stable process.
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Theorem 2. (de Haan, 1984; Penrose, 1992)
Any simple max-stable process {η(x) : x ∈ X} can be
represented as follows

{η(x) : x ∈ X}
d
=

{

max
ϕ∈Φ

ϕ(x) : x ∈ X

}

,

where Φ is a Poisson point process on C0 = C{X , [0,∞)} \ {0}
with intensity measure

Λ(A) =

∫ ∞

0
Pr(ζY ∈ A)ζ−2dζ, A ⊂ C0 Borel set,

and where {Y (x) : x ∈ X} is a non negative stochastic process
such that E{Y (x)} = 1, x ∈ X and E {supx∈X Y (x)} < ∞.
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Example 1. (Brown and Resnick, 1977; Kabluchko et al., 2009)
The Brown–Resnick model consists in taking

{Y (x) : x ∈ X}
d
= {exp {ε(x)− γ(x)} : x ∈ X} ,

where {ε(x) : x ∈ X} is a centered Gaussian process with
stationary increments and semi variogram γ.

Example 2. (Davison et al., 2012; Opitz, 2013)
The extremal–t model consists in taking

{Y (x) : x ∈ X}
d
= {cν max{0, ε(x)}ν : x ∈ X} ,

where ν ≥ 1 and {ε(x) : x ∈ X} is a standard Gaussian process
with correlation function ρ and cν is a normalizing constant.
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� The way the atoms of Φ contribute to {η(x) : x ∈ X} at
locations x1, . . . , xk defines a hitting scenario.
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Figure 1: Illustration of the notion of a hitting scenario. Here the hitting scenario is
τ = {{x1}, {x2, x3}}.
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� Let Pk the set of all possible partitions of {x1, . . . , xk}.
� The density of {η(x1), . . . , η(xk)} is

f(z) = exp{−V (z)}
∑

τ∈Pk

|τ |
∏

j=1

∫

(0,zτ
−j

)
λ(zτj , uj)duj .

Example 3. (Dombry et al., 2013; Dombry and Éyi-Minko,
2013)
For the Brown–Resnick model, λ is (related to) a multivariate
log-normal distribution.

Example 4. (Ribatet, 2013)
For the Extremal-t, λ is (related to) a multivariate Student
distribution.
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� The extremal coefficients summarize the dependence of
max-stable random vectors

1
dependence

≤ θ = −z log Pr{η(xj) ≤ z : j = 1, . . . , k} ≤ k
independence

.

� In a spatial context, it is more convenient to plot the
extremal coefficient function

θ : X −→ [1, 2]

h 7−→ θ(o, h),

which plays a similar role to the semivariogram in
conventional geostatistics.

� Usually isotropy is assumed, i.e., θ(h) = θ(‖h‖).
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Figure 2: Plot of various extremal coefficient functions. Left: Brown–Resnick model.
Right: Extremal-t model.

� We get a rough picture of how dependence decreases.
� What’s the difference between θ(h) = 1.2 and θ(h) = 1.4???
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Definition 2. Let {Xi(x) : x ∈ X , i = 1, . . . , n} be independent
copies of a stochastic process {X(x) : x ∈ X}—with continuous
margins. Extremes are said sample concurrent at locations
(x1, . . . , xk), k ≥ 2, if there exists ℓ ∈ {1, . . . , n} such that

max
i=1,...,n

Xi(xj) = Xℓ(xj), for all j = 1, . . . , k.

The associated sample concurrence probability is

pn(x1, . . . , xk) = Pr{sample concurrence occurs at (x1, . . . , xk)}.

� It is not difficult to show that

pn(x1, . . . , xk) = nE
[

F {X(x1), . . . , X(xk)}
n−1

]

.
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Definition 3. Let {η(x) : x ∈ X} be a (simple) max-stable
process with spectral characterization η(·) = maxϕ∈Φ ϕ(·).
Extremes are said extremal concurrent at location (x1, . . . , xk),
k ≥ 2, if there exists ℓ ≥ 1 such that

η(xj) = ϕℓ(xj), for all j = 1, . . . , k.

The associated extremal concurrence probability is

p(x1, . . . , xk) = Pr{extremal concurrence occurs at (x1, . . . , xk)}.
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Definition 3. Let {η(x) : x ∈ X} be a (simple) max-stable
process with spectral characterization η(·) = maxϕ∈Φ ϕ(·).
Extremes are said extremal concurrent at location (x1, . . . , xk),
k ≥ 2, if there exists ℓ ≥ 1 such that

η(xj) = ϕℓ(xj), for all j = 1, . . . , k.

The associated extremal concurrence probability is

p(x1, . . . , xk) = Pr{extremal concurrence occurs at (x1, . . . , xk)}.

Remark. Extremal concurrence for (x1, . . . , xk) ⇐⇒ the hitting
scenario is τ = {x1, . . . , xk}.
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Proposition 1. Let {X(x) : x ∈ X} be a stochastic process that
belongs to the max-domain of attraction of some max-stable
process {η(x) : x ∈ X}. Then for all x1, . . . , xk ∈ X , k ≥ 2,

pn(x1, . . . , xk) −→ p(x1, . . . , xk), n → ∞.

Remark. Actually we can show a bit more than the above:

the sample hitting scenario converges to the extremal one.
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Theorem 3. Let {Y (x) : x ∈ X} and {Ỹ (x) : x ∈ X} be two
independent copies of the process appearing in the spectral
characterization. Then for all x1, . . . , xk ∈ X , k ≥ 2,

p(x1, . . . , xn) = EY





[

EỸ

{

max
j=1,...,k

Ỹ (xj)

Y (xj)

}]−1


 ,

or equivalently in terms of the V function

p(x1, . . . , xn) = E

[

1

V {Y (x1), . . . , Y (xk)}

]

.

Remark. Typically closed forms won’t be available but the above
equation suggests a (simple) Monte Carlo estimator.
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Proposition 2. Let {η̃(x) : x ∈ X} be an independent copy of
{η(x) : x ∈ X}. Then for all x1, . . . , xk ∈ X , k ≥ 2,

p(x1, . . . , xk) =

k
∑

r=1

(−1)r
∑

J⊆{1,...,k}
|J|=r

Eη̃

(

log Pr
η
[{η(xj) ≤ η̃(xj), j ∈ J}]

)

,

or equivalently in terms of the V function

p(x1, . . . , xk) =
k

∑

r=1

(−1)r+1
∑

J⊆{1,...,k}
|J |=r

E [V {η(xj) : j ∈ J}] .

Remark. As expected the extremal concurrence probability does
not depend on a specific spectral representation but only on the
distribution of {η(x) : x ∈ X}.
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Proposition 3. Let {η̃i(x) : x ∈ X , i ≥ 1} be a sequence of
independent copies of a simple max-stable process
{η(x) : x ∈ X}. Then the process

{ξ(x) : x ∈ X} =

{

max
i=1,...,n

ζi
Yi(x)

η̃i(x)
: x ∈ X

}

is a simple max-stable process and for all x1, . . . , xk ∈ X , k ≥ 2,

p(x1, . . . , xk) =
k

∑

r=1

(−1)r+1
∑

J⊆{1,...,k}
|J |=r

θξ(xj : j ∈ J),

where θξ(xj : j ∈ J) = − log Pr{ξ(xj) ≤ 1: j ∈ J}.
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� The above expression simplify a lot when k = 2.
� In particular p(x1, x2) = 2− θξ(x1, x2) and we can define an

extremal concurrence probability function and gets its
properties for free (Schlather and Tawn, 2003; Cooley et al.,
2006)!

Proposition 4. Let p : h 7→ p(o, h) be the extremal concurrence
probability function of a stationary max-stable process
{η(x) : x ∈ X}. Then

i) h 7→ p(h) is positive semidefinite,
ii) h 7→ p(h) is not differentiable at the origin unless p ≡ 1.
iii) If d ≥ 1 and η is isotropic, then h 7→ p(h) has at most one

jump at the origin and is continuous elsewhere.
iv) 2− p(h1 + h2) ≤ {2− p(h1)}{2− p(h2)}.
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Proposition 5. For all x1, x2 ∈ X ,

p(x1, x2) = 0 ⇐⇒ η(x1) and η(x2) are independent,

p(x1, x2) = 1 ⇐⇒ η(x1) and η(x2) are completely dependent,

and 1
2{2− θ(x1, x2)} ≤ p(x1, x2) ≤ 2− θ(x1, x2).

Remark. The extremal concurrence probability function is very
similar to the extremal coefficient function but appears to be
more natural and interpretable.

Theorem 4. Let {η̃(x) : x ∈ X} be an independent copy of
{η(x) : x ∈ X}. Then for all x1, x2 ∈ X ,

p(x1, x2) = E [sign{η(x1)− η̃(x1)}sign{η(x2)− η̃(x2)}] ,

i.e., it is the Kendall’s τ .
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� Suppose we have observed n = m× ℓ independent copies of
a stochastic process {X(x) : x ∈ X} at locations x1, . . . , xk
and that X(·) belongs to the max-domain of attraction of a
max-stable process.

� As usual we partition the data into non overlapping blocks of
size m, i.e., the r-th block corresponds to

Xr(m−1)+1(·), . . . , Xr×m(·).

� And check whether sample concurrence arises in each block,
leading to the estimator

p̂m(x1, . . . , xk) =
1

ℓ

ℓ
∑

r=1

1{sample concurrence in the r-th block}.



Sample concurrence estimator

1. Introduction

2. Concurrence

3. Inference

⊲

Sample
concurrence
estimator

Extremal
concurrence
estimator

4. Simulation study

5. Application

Probabilities of concurrent extremes Mathieu Ribatet – 23 / 39

� Such a “blocking estimator” usually gives rise to a
bias/variance trade-off. As the block size m increases,

– the bias pm − p decreases;
– while the variance m

n pm(1− pm) increases.

� To get the optimal block size m∗ we need to compute pm− p
which is usually intractable—apart from specific situations.

Proposition 6. If {X(x) : x ∈ X} is max-stable, then

pm − p =
k

∑

r=2

Pr(|Θ| = r)

mr−1
, m ≥ 1.

In particular 0 ≤ pm − p ≤ (1− p)/m and pm − p ∼ m−rcr,
r ≥ 1 and cr > 0.
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� Proposition 6 suggests that the optimal block size satisfies

m∗ ∼

{

2rc2rn

p(1− p)

}1/(2r+1)

, MSE(p̂m∗
) ∝ n−2r/(2r+1).

Proposition 7. If p ∈ (0, 1) and m ∼ λn1/(2r+1), λ ∈ (0,∞),
then

√

n

m
(p̂m − p) −→ N

{ cr

λr+1/2
, p(1− p)

}

, n → ∞.

Remark. When k = 2, we can get a unbiased estimator

p̃m =
mp̂m − 1

m− 1
,

because from Proposition 6 we have pm − p = (1− p)/m.
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� T{X1(x), . . . , Xn(x)} = {X(1)(x), . . . , X(n)(x)} is a
sufficient statistic for pm(x1, . . . , xk) where
X(1)(x) ≺ · · · ≺ X(n)(x) is the (lexico) sorted sample.

Proposition 8. Define the new estimator

p̂∗m = E(p̂m | T ) =
1

n!

∑

σ∈Sn

p̂m{Xσ(1), . . . , Xσ(n)}.

Then E(p̂∗m) = pm and Var(p̂∗m) ≤ Var(p̂m).
In addition the estimator can be efficiently computed using

p̂∗m =
1

(n
m

)

n
∑

i=1

(

di
m− 1

)

,

where di =
∑n

j=1 1{Xj(x)≤Xi(x)} and
( di
m−1

)

= 0 if di < m− 1.
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� Suppose we have observed n independent copies of a
max-stable process {η(x) : x ∈ X} at locations x1, . . . , xk.

� Bivariate extremal concurrence probabilities are estimated
using Kendall’s τ , i.e.,

p̂(x1, x2) =
2

n− 1

∑

1≤i<j≤n

sign{ηi(x1)−ηj(x1)}sign{ηi(x2)−ηj(x2)},

which is an unbiased and asymptotically efficient estimator.

Remark. When k ≥ 3, we were not able to find any unbiased
estimator.
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� Shortly we want to investigate

– how the Rao–Blackwellized estimator p̂∗m outperforms
p̂m—and check the optimal block sizes;

– the robustness of the extremal concurrence probability
estimator p̂ to departures from max-stability;

– our best estimator.
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Figure 3: Evolution of the root mean squared error for p̂m (left) and p̂∗m (right) as
the block size m and the sample size n increase. These estimates were obtained from
2000 Monte-Carlo samples sampled from a Brown–Resnick model with semivariogram
γ(h) = h/1.627. This semivariogram was chosen such that the theoretical extremal
concurrence probability is p = 0.5. The red circles indicate the optimal block sizes
and their corresponding optimal root mean squared.



Departures from max-stability

1. Introduction

2. Concurrence

3. Inference

4. Simulation study

Goals
Empirical estimator
performances

⊲
Departures from
max-stability

Overall comparison

5. Application

Probabilities of concurrent extremes Mathieu Ribatet – 30 / 39

{η̃(x) : x ∈ X} =

{

1

n0
max

i=1,...,n0

Yi(x)

Ui
: x ∈ X

}

, (1)

where U1, . . . , Un0

iid
∼ U(0, 1) and {Yi(x) : x ∈ X , i ≥ 1} as in

the spectral representation.
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Figure 4: Evolution of the root mean squared error for p̂ as the theoretical extremal
concurrence probability p and the number of spectral function n0 in (1) increase.
These estimates were obtained from 2000 Monte-Carlo samples of size n with, from
left to right, n = 25, 50, 100, 500.
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Figure 5: Boxplots of the sample (red/middle), unbiased sample (green/right) and
extremal (grey/left) concurrence probability estimators at distance lags h = 1, 2, 3, 4.
The boxplots were obtained from 2000 independent estimates. From left to right:
the sample size is respectively 25, 50, 100 and 500. The top panel corresponds to
an extremal-t model with ν = 5, and correlation function ρ(h) = exp(−h/10). The
bottom panel corresponds to a Brown–Resnick model with semi variogram γ(h) =
h/3. For each panel, the solid line represents the corresponding theoretical extremal
concurrence probability function.
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Figure 6: Left: Spatial distribution of the 424 weather stations. The triangles
indicate the selected stations for the analysis—upward: daily maxima, downward:
daily minima. Right: The seasonal extrema time series of the selected stations.

� The data are freely available from http://cdiac.ornl.gov/.
� To avoid any seasonal effect, we will work with seasonal

extremes.

http://cdiac.ornl.gov
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Figure 7: Maps of the extremal concurrence probability for the four selected stations.
Top left: Fall (Sep., Oct. Nov.), top right: Winter (Dec., Jan., Feb.), bottom left:
Spring (Mar., Apr., May) and bottom right: Summer (June, July, Aug.).



Concurrence cells

1. Introduction

2. Concurrence

3. Inference

4. Simulation study

5. Application

US Temperatures

Concurrence maps

⊲ Concurrence cells

Probabilities of concurrent extremes Mathieu Ribatet – 35 / 39

� For each x ∈ X we define the concurrence cell of x as the
random set

C(x) = {s ∈ X : x and s are concurrent} .

� Clearly we have

E{|C(x)|} = E

[∫

X
1{s∈C(x)}ds

]

=

∫

X
p(x, s)ds.

� This suggests plotting the spatial distribution of the
pointwise expected concurrence cell area, i.e.,

{(s,E{|C(s)|}) : s ∈ X} .
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Figure 8: Estimated spatial distribution of the expected extremal concurrence cell
areas—in squared degree, i.e., around 1000 km2. From left to right: 1910–1950,
1951–2010, and their ratio (1951–2010 at the numerator). Top: Winter minima,
bottom: Summer maxima.
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Figure 9: Spatial distribution of the estimated concurrence cell areas anomalies in
squared degree, i.e., around 1000 km2 for winter minima (top) and summer maxima
(bottom). The data were stratified into three classes: El Niño, La Niña and the base
class “La Nada”. Left panels: El Niño anomalies. Right panels: La Niña anomalies.
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