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Abstract

Simulation of stochastic phenomena has become an important tool to assess
characteristics which are analytically intractable. In this chapter, we deal with
the problem of sampling from max-stable processes, which, by the spectral
representation (de Haan, 1984), require taking the pointwise maxima over an
infinite number of spectral functions belonging to a Poisson point process. In

1



2 Extreme Value Modeling and Risk Analysis: Methods and Applications

practice, spectral functions are simulated in an appropriate order until some
stopping rule takes effect. For mixed moving maxima processes with bounded
shape functions with joint compact support, Schlather (2002) provides such a
stopping criterion yielding an exact simulation. Oesting et al. (2013) consider
stopping rules for a family of equivalent spectral representations in a very
general setting, particularly focusing on the normalized spectral representation
which allows for an exact simulation, as well. Although this representation
exists under mild conditions, the distribution of the corresponding spectral
functions might be inappropriate for sampling. In this case, approximative
procedures are proposed. Here, the choice of the stopping rule and the spectral
representation is crucial for the quality of approximation. In this context, we
discuss measures of simulation efficiency and quality. Several examples of max-
stable processes are analyzed. We particularly focus on the challenging case of
Brown-Resnick processes which are stationary although originally constructed
via non-stationary spectral functions. Finally, we review existing R packages
on the simulation of max-stable processes.

1.1 Introduction

Max-stable processes have become frequently used models for spatial ex-
tremes. However, due to their rather sophisticated structure, in many cases,
analytical expressions are available for the bivariate (or sometimes also trivari-
ate) distributions of the process only. Thus, in order to assess some more
advanced characteristics of the process which are of interest in practical ap-
plications, stochastic simulation is used. Further, the problem of simulation
of max-stable processes is closely related to the questions of conditional sim-
ulation and prediction of max-stable processes given observations at some
locations (see Chapter ?? for details).

In the following, we will deal with the problem of simulation of a sample-
continuous max-stable process Z on some compact domain X ⊂ Rd. Without
loss of generality, we may assume that Z has unit Fréchet margins. Realiza-
tions of a process with arbitrary generalized extreme value marginal distribu-
tions can be obtained by marginal transformations.

Remind that, the process Z allows for a spectral representation (cf.
de Haan, 1984; Giné et al., 1990; Penrose, 1992) of the form

Z(x) = max
i≥1

ζiψi(x), x ∈ X , (1.1)

where {(ζi,ψi)}i≥1 is a Poisson point process on (0,∞) × C with intensity
measure ζ−2 dζ × ν(dψ) for some locally finite measure ν on the space C =
C(X , [0,∞)) of continuous non-negative functions on X such that

∫

ψ(x) ν(dψ) = 1, x ∈ X . (1.2)
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FIGURE 1.1
Ten approximations of logZ on the interval [−50, 50] by taking the maximum
over the first N spectral functions with N = 100, 1000, 10000 (from left to
right). Here, Z is a Brown-Resnick process associated to the semi-variogram
γ(h) = 1

2 |h|.

The aim of this chapter is the simulation of the process Z on X . Accord-
ing to representation (1.1), Z is constructed as the pointwise maximum of an
infinite number of functions. Thus, exact simulation of Z is in general not
straightforward. In many cases, the Poisson points {(ζi,ψi)}i≥1 can be sub-
sequently simulated such that ζi+1 ≤ ζi for all i ≥ 1 (see Section 1.2). This
motivates the strategy of approximating Z by the maximum over the “first”
N points where the finite number N is given by some stopping criterion.

Although this procedure might be quite efficient in some cases, there are
examples where this straightforward approach also encounters severe prob-
lems. Such examples contain the important class of Brown-Resnick processes
(Kabluchko et al., 2009) where the spectral measure ν in representation (1.1) is
the probability measure of the stochastic process Y (t) = exp(W (t)−σ2(t)/2).
Here, W (·) is a centered Gaussian process with stationary increments, semi-
variogram γ and variance σ(·). Thus, the Brown-Resnick process Z associated
to the semi-variogram γ can be written as

Z(t) = maxi≥1 ζi exp(Wi(t)− σ2(t)/2), t ∈ R
d, (1.3)

where {ζi} are the points of a Poisson point process with intensity ζ−2 dζ and
Wi, i ≥ 1, are independent copies of W .

Then, the max-stable process Z is stationary although the spectral process
Y is not. Thus, a challenge for an accurate simulation of Z is the visualization
of stationarity. However, as Figure 1.1 shows for the example of Brown-Resnick
process associated to the semi-variogram γ(h) = 1

2 |h|, considered first by
Brown and Resnick (1977), finite approximations obtained in the above way
may depict clear trends even for a large number N of considered spectral
functions. Thus, in this case, a more sophisticated procedure is needed for an
accurate approximation. This motivates a careful analysis of different cases.
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The chapter is organized as follows: In Section 1.2, we present the ba-
sic procedure of simulation. We focus on two important classes of spectral
representations — the representation via stochastic processes and the mixed
moving maxima representation — and consider subclasses which allow for
an exact simulation by Schlather’s (2002) algorithm. Section 1.3 deals with
transformations that allow to switch between different, but equivalent spec-
tral representations and the according simulation procedures. Here, we place
particular emphasis on the so-called normalized spectral representation which
enables exact simulation. Further, we provide a measure for efficiency to com-
pare different exact simulation procedures. Due to the complexity of exact
simulation, it may be worthwhile to consider approximative algorithms. Error
estimates are given in Section 1.4. In Section 1.5, we discuss accurate simula-
tion for several examples including some of the most commonly used classes
of max-stable processes. Finally, we present an overview over R packages on
the simulation of max-stable processes (Section 1.6).

1.2 Basic Procedure and Stopping Rules

In the following, we always assume that Z is a max-stable process on a com-
pact domain X ⊂ Rd with spectral representation (1.1). As this representation
just requires the spectral measure ν to be a locally finite measure on C satisfy-
ing condition (1.2), the class of max-stable processes contains a large variety
of models potentially requiring different procedures for an accurate simula-
tion. Thus, we first restrict ourselves to two important classes of max-stable
processes, namely the class of processes which are represented via stochastic
processes (i.e. the spectral measure is a probability measure) and the class of
mixed moving maxima processes. In both cases, we consider subclasses that
allow for an exact simulation in finite time by algorithms devised by Schlather
(2002). In Section 1.3, we will see how transformations of the spectral measure
allow us to reduce simulation problems to these cases. Thus, the procedures
presented in this section also prove useful in a more general setting.

1.2.1 Representation via Stochastic Processes

First, we consider the case that ν is a probability measure. Then, the corre-
sponding process Z possesses a Penrose (1992)-type representation:

Z(x) = max
i≥1

ζiYi(x), x ∈ X , (1.4)

where {ζi}i≥1 is a Poisson point process on (0,∞) with intensity measure
ζ−2dζ and Yi, i ≥ 1, are independently distributed according to the prob-
ability measure ν. According to condition (1.2), the processes Yi necessar-
ily satisfy EYi(x) = 1 for all x ∈ X . As the spectral functions Yi allow
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for an interpretation as independent stochastic processes, we call the spec-
tral representation (1.4) a representation via stochastic processes. Examples
of max-stable processes with such a representation are Brown-Resnick pro-
cesses (Kabluchko et al., 2009) where Yi is a log-Gaussian process or extremal
t processes (Opitz, 2013) where Yi is the positive part of a Gaussian process to
some positive power α, including the particular case of an extremal Gaussian
process (Schlather, 2002) with α = 1.

For simulation of the Poisson point process {ζi}i≥1, we note that, by the
mapping theorem, {ζ−1

i }i≥1 is a standard Poisson point process on (0,∞),
i.e. ζ−1

1 , ζ−1
2 − ζ−1

1 , ζ−1
3 − ζ−1

2 , . . . are independent and standard exponentially
distributed. Thus, for Z as defined in (1.4), we obtain the equality

Z(x) =d max
i≥1

Yi(x)
∑i

j=1 Ej

, x ∈ X , (1.5)

for Ej ∼iid Exp(1), j ≥ 1, where Exp(λ) denotes the exponential distribution
with parameter λ > 0 and =d denotes equality in distribution.

In the case that the spectral processes Yi, i ≥ 1, are a.s. bounded, that is,

supx∈X Yi(x) ≤ C a.s. (1.6)

for some constant C > 0, the product (
∑k+1

j=1 Ej)−1Yk+1 cannot contribute to
the pointwise maximum in (1.5) if

C
∑k+1

j=1 Ej

≤ inf
x∈X

(

max
i≥1

Yi(x)
∑i

j=1 Ej

)

. (1.7)

(cf. Schlather, 2002; Oesting et al., 2013). As the points {(
∑i

j=1 Ej)−1}i≥1

are in a descending order, this fact allows us to write the process Z as the
pointwise maximum over a finite number of functions.

Proposition 1.2.1. (analogous to Schlather, 2002, Thm. 4) Let Ei ∼iid

Exp(1), i ≥ 1, and, independently of {Ei}i≥1, let Yi, i ≥ 1, be independent
copies of a stochastic process Y satisfying (1.6) for some C > 0. Then,

maxNi=1

(

(

∑i
j=1 Ej

)−1
Yi(x)

)

= maxi≥1

(

(

∑i
j=1 Ej

)−1
Yi(x)

)

, x ∈ X ,

where N is an a.s. finite random number N , defined by

N = min

{

k ≥ 1 :
C

∑k+1
j=1 Ej

≤ inf
x∈X

(

k
max
i=1

Yi(x)
∑i

j=1 Ej

)}

.

In particular, the process Z given by (1.4) satisfies Z(·) =d maxNi=1
Yi(·)∑
i
j=1 Ej

.

Thus, the process Z can be simulated exactly in finite time by the following
algorithm.



6 Extreme Value Modeling and Risk Analysis: Methods and Applications

Algorithm 1.2.2. Simulation of a max-stable process (1.4) with spec-
tral function bounded by C
Set Z(x) = 0, x ∈ X , and simulate ζ−1 ∼ Exp(1).
while (ζC > infx∈X Z(x)) {

Simulate Y ∼ ν.
Update Z(x) by max{Z(x), ζY (x)} for all x ∈ X .
Simulate E ∼ Exp(1) and update ζ−1 by ζ−1 + E.

}
Return Z.

For many examples of processes represented via stochastic processes, con-
dition (1.6) is not satisfied. In this case, Schlather (2002) proposes to ap-
proximate the process by choosing some constant C∗ and applying Algorithm
1.2.2 with C = C∗. For an accurate approximation, C∗ should be chosen large
enough such that P(supx∈X Y (x) > C∗) is small. However, the larger C∗ is,
the more iterations of the algorithm are needed until the stopping criterion
is met. Thus, the choice of C∗ is a trade-off between simulation accuracy and
running time. We will deal with this question in more detail in Section 1.4.

One way to handle the difficulties associated with the choice of an upper
bound C∗ might be the choice of a different but stochastically equivalent spec-
tral representation, that is, a spectral representation that yields a max-stable
process with the same distribution. Note that, by Corollary 9.4.5 in de Haan
and Ferreira (2006), any sample-continuous max-stable process possesses a
spectral representation satisfying supx∈X Y (x) = c a.s. for some positive con-
stant c. In particular, condition (1.6) is met and, thus, the process can be
simulated exactly using the above algorithm. We will discuss the construction
of such a representation and its effects on simulation in Section 1.3.

1.2.2 Mixed Moving Maxima Processes

As a second class of max-stable processes, we consider the class of mixed
moving maxima processes on Rd (see Schlather, 2002; Stoev and Taqqu, 2005,
for example). Here, let {(ζi, Si)}i≥1 be the points of a Poisson point pro-
cess on (0,∞) × Rd with intensity measure ζ−2dζ × ds. Independently, let
Fi ∼iid F , i ≥ 1, for some nonnegative random function F on Rd satisfying
E
(∫

Rd F (x) dx
)

= 1. Then, the mixed moving maxima process

Z(x) = max
i≥1

ζiFi(x− Si), x ∈ X , (1.8)

is a stationary max-stable process with standard Fréchet margins. Note that
the class of mixed moving maxima processes contains the processes consid-
ered by Smith (1990) with F being a deterministic function, for instance, a
Gaussian density function. The work of Smith (1990) also provides an inter-
pretation of mixed moving maxima as models for storms, where ζi is perceived
as the strength, Si as the center and Fi as the shape of a storm.
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In contrast to the representation via stochastic processes considered in
Subsection 1.2.1, here, the associated spectral measure ν, given by

ν(A) =
∫

Rd P(F (·− s) ∈ A) ds, A ⊂ C Borel,

is infinite. Due to this fact, the collection {ζi}i≥1 of first components of the
points {(ζi, Si)}i≥1 cannot be simulated in a descending order as the number
of ζi, i ≥ 1, with a ≤ ζi ≤ b is infinite for all 0 < a < b. However, this number
becomes finite if we restrict ourselves to those points whose second component
is in some compact set.

Note that such a restriction can be made without affecting the correspond-
ing max-stable process Z if the shape functions are a.s. supported in some
compact domain only, i.e., if we have

P(F (x) = 0 for all x ∈ R
d \ b(o,R)) = 1 (1.9)

for some R > 0 where b(o,R) denotes a d-dimensional ball around the origin
with radius R. In this case, the process ζiFi(·− Si) cannot contribute to the
maximum {Z(X) : x ∈ X} if Si /∈ K ⊕ b(o,R) where A ⊕ B = {a + b : a ∈
A, b ∈ B} for A,B ⊂ Rd. Thus, instead of considering all points {(ζi, Si)}i≥1,
the points {(ζi, Si) : Si ∈ X ⊕ b(o,R)}i≥1, i.e. the points of the Poisson
point process restricted to (0,∞)× (X ⊕b(o,R)), are sufficient to simulate the
process {Z(x), x ∈ X}. These points can be simulated in the following way (cf.
Schlather, 2002, Lemma 3): Let Ej ∼iid Exp(1), j ≥ 1, and, independently of
{Ej}j≥1, let Si, i ≥ 1, be independent random variables uniformly distributed
on X ⊕ b(o,R), denoted by Si ∼iid Unif(X ⊕ b(o,R)). Then, the points

{(

|X ⊕ b(o,R)|
(

∑i
j=1 Ei

)−1
, Si

)}

i≥1

form a Poisson point process on (0,∞)×(X⊕b(o,R)) with the desired intensity
measure, where | · | denotes the Lebesgue measure. Thus, the mixed moving
maxima process (1.8) can be written as the maximum over a finite number of
functions provided that the shape function F is bounded and satisfies (1.9).

Proposition 1.2.3. (Schlather, 2002, Thm. 4) Let Fi, i ≥ 1, be independent
copies of some stochastic process F that satisfies (1.9) for some R > 0 and

supx∈Rd F (x) ≤ C a.s. (1.10)

for some C > 0. Independently of {Fi}i≥1, let Ei ∼iid Exp(1), i ≥ 1, and
Si ∼iid Unif(X ⊕ b(o,R)) be independent sequences. Then, the mixed moving
maxima process {Z(x), x ∈ X} defined in (1.8) satisfies

Z(·) =d
N

max
i=1

|X ⊕ b(o,R)|
∑i

j=1 Ej

Fi(·− Si)

for an a.s. finite number N defined by

N = min

{

k ≥ 1 :
C

∑k+1
j=1 Ej

≤ inf
x∈X

(

k
max
i=1

Fi(x− Si)
∑i

j=1 Ej

)}

.
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This result allows for the following implementation of an exact simulation
procedure.

Algorithm 1.2.4. Simulation of a max-stable process (1.8) with shape
function supported within b(0, R) and bounded by C
Set Z(x) = 0, x ∈ X , and simulate ζ−1 ∼ Exp(1).
while (ζC > infx∈X Z(x)/|X ⊕ b(o,R)|) {

Simulate F ∼ P(F ∈ ·) and S ∼ Unif(X ⊕ b(o,R)).
Update Z(x) by max{Z(x), |X ⊕ b(o,R)| · ζ · F (x− S)} for all x ∈ X .
Simulate E ∼ Exp(1) and update ζ−1 by ζ−1 + E.

}
Return Z.

If not both condition (1.9) and (1.10) are met, similarly to the case of a
representation via stochastic processes, Schlather (2002) proposes an approx-
imation. We choose R∗ > 0 and C∗ > 0 such that P(supx∈Rd F (x) > C∗) is
small and the shape function F is negligible outside b(o,R) and apply Algo-
rithm 1.2.4 with R = R∗ and C = C∗. Again, the choice of R∗ and C∗ is a
trade-off between accuracy and running time of the simulation algorithm. We
will further address this issue in Section 1.4 providing some error bounds.

1.3 The Choice of the Spectral Representation

In this section, we will discuss the choice of the (non-unique) spectral represen-
tation of a max-stable process and its effects on simulation. We will consider
several transformations that allow for switching from one spectral to another.

At first, we review a class of transformations presented in Oesting et al.
(2013) leading to several equivalent representations via stochastic processes.
We start with a max-stable process Z with general representation (1.1) and
spectral measure ν. Let g be a probability density function with respect to ν,
i.e. g ≥ 0 and

∫

C g(f) ν(df) = 1, such that

ν ({f ∈ C : g(f) = 0, supx∈X f(x) > 0}) = 0.

Then, we obtain that

Z(x) =d max
i≥1

1
∑i

j=1 Ej

Y ∗
i (x)

g(Y ∗
i )

, x ∈ X , (1.11)

where Y ∗
i , i ≥ 1, are independent and identically distributed according to the

probability measure gν, i.e. P(Y ∗
i ∈ A) =

∫

C 1A(f)g(f) ν(df) for all Borel sets
A ⊂ C, (Oesting et al., 2013, Prop. 2.1). In particular, the transformed spectral
functions Y ∗

i /g(Y
∗
i ) can be seen as independent and identically distributed

processes. Thus, (1.11) is a representation of Z via stochastic processes.
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Similarly to Subsection 1.2.1, the representation via stochastic processes
allows us to give some stopping rule for the simulation. Following Oesting
et al. (2013), this criterion will in general be sharper than the one presented
in Subsection 1.2.1 as it is based on a pointwise bound instead of an overall
bound: A function (

∑k
j=1 Ej)−1Y ∗

k (x)/g(Y
∗
k ) cannot contribute to the point-

wise maximum in (1.11) if

1
∑k+1

j=1 Ej

ess sup
f∈C

f(x)

g(f)
≤ max

i≥1

1
∑i

j=1 Ej

Y ∗
i (x)

g(Y ∗
i )

for all x ∈ X ,

or, equivalently,
k+1
∑

j=1

Ej ≥ sup
x∈X

ess sup
f∈C

f(x)

g(f)Z(k)(x)
(1.12)

where

Z(k)(x) =
k

max
i=1

1
∑i

j=1 Ej

Y ∗
i (x)

g(Y ∗
i )

, x ∈ X ,

and ess sup denotes the essential supremum with respect to the transformed
measure gν. Thus, as infx∈X Z(x) > 0 a.s., the representation (1.11) allows
for an exact simulation of Z in a.s. finite time if and only if g satisfies

sup
x∈X

ess sup
f∈C

f(x)

g(f)
< ∞. (1.13)

Oesting et al. (2013) focus on a specific choice of g that satisfies (1.13) —
the so-called normalized spectral representation. This representation — whose
existence is shown by de Haan and Ferreira (2006), Cor. 9.4.5 — is a rep-
resentation via stochastic processes (1.11) and is characterized by the fact
that the stochastic processes Yi, i ≥ 1, (which correspond to Y ∗

i /g(Y
∗
i ) in

representation (1.11)) satisfy

supx∈X Yi(x) = c a.s. (1.14)

for some c > 0. In representation (1.11), this corresponds to the choice g(f) =
c−1 supx∈X f(x) where

c =
∫

C supx∈X f(x) ν(df) = − logP (supx∈X Z(x) ≤ 1)

which ensures that g is a probability density with respect to ν as well as
(1.14) by which it is determined uniquely. Note that c < ∞ if and only if
supx∈X Z(x) < ∞ a.s. (cf. Resnick and Roy, 1991) which holds as Z is sample-
continuous. Further, the distribution of the spectral functions Y ∗

i /g(Y
∗
i ) is

uniquely defined by (1.14) (cf. Oesting et al., 2013, Prop. 2.5). In particular,
the distribution does not depend on the initial choice of ν.

Due to (1.14), the normalized spectral representation allows for an exact
simulation in a.s. finite time. Although in general being slightly less precise
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than the stopping rule (1.12) with g(f) = c−1 supx∈X f(x), in this case, in
practice, the simulation is stopped if

∑k+1

j=1
Ej ≥

c

infx∈X Z(k)(x)
, (1.15)

that is, simulation is performed according to Algorithm 1.2.2 with C = c.

Although simulation via the normalized spectral representation is exact
and, as we will see in Section 1.4, seems to be quite efficient, for some mod-
els, the implementation may be difficult in practice due to the transformed
measure gν. While the original spectral representation is usually chosen such
that the spectral function can be simulated at rather little cost, this is not
necessarily the case any more for the functions Y ∗

i ∼ gν from representation
(1.11). Thus, in view of the simulation efficiency, it may be useful to use a
different representation. Engelke et al. (2014) present transformations that
allow to switch between a representation via stochastic processes (1.4) and a
mixed moving maxima representation (1.8). While a mixed moving maxima
representation can always be transformed into a representation via stochastic
processes via a transformation of the same type as in (1.11), the existence of a
mixed moving maxima representation is linked to further assumptions on the
spectral process Y ∼ ν defined on Rd. According to Kabluchko et al. (2009)
and Engelke et al. (2014) sufficient conditions are:

(i) E(Y (x)) = 1 for all x ∈ Rd

(ii) lim∥x∥→∞ Y (x) = 0 a.s.

(iii) E(supx∈K Y (x)) < ∞ for all compact sets K ⊂ Rd

If all these conditions are satisfied, the max-stable process (1.4) can be writ-
ten as a mixed moving maxima process (1.8) with shape function F (·) =
(E(
∫

Rd F̃ (x) dx))−1F̃ (·) where the distribution of F̃ is given by

P(F̃ ∈ A) =

∫∞
0 mP(Y (·+ τ)/m ∈ A, τ ∈ K | M = m)P(M ∈ dm)

∫∞
0 mP(τ ∈ K | M = m)P(M ∈ dm)

(1.16)

for any Borel set A ⊂ C(Rd) (Engelke et al., 2014, Thm. 4.3). Here, K ⊂
Rd is an arbitrary compact set and M and τ are random variables defined
by M = maxx∈Rd Y (x) and τ = inf{argmaxx∈Rd Y (x)}, respectively. Note
that, with probability one, the maximum of the shape function F has the
value E(

∫

Rd F̃ (x) dx))−1 and is attained at the origin. Thus, it is suitable to
simulate the process via Algorithm 1.2.4 even though the support of F may be
unbounded. In general, the distribution of the shape function given by (1.16)
is difficult to handle. However, in some cases, it allows for simulation (see
Subsection 1.5.3 for some examples).
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1.4 Measures of Simulation Efficiency and Quality

In this section, we will investigate the efficiency and quality of the simula-
tion procedures introduced above. Following Dombry and Éyi-Minko (2012)
and Dombry and Éyi-Minko (2013), we separate the set of Poisson points
{ζi,ψi}i≥1 from (1.1) into those processes that contribute to the maximum Z
and those that do not. To this end, we define the set of extremal functions

Φ+ = {(ζk,ψk) : ζkψk(x) = maxi≥1 ζiψi(x) for some x ∈ X}

and the set of subextremal functions

Φ− = {(ζk,ψk) : ζkψk(x) < maxi≥1 ζiψi(x) for all x ∈ X}.

Note that both Φ+ and Φ− form point processes (cf. Dombry and Éyi-Minko,
2012). In view of these definitions, a realization that is obtained by some
simulation procedure can be seen as correct if all extremal functions are taken
into consideration, and a simulation algorithm is an exact algorithm if the
resulting realizations are correct with probability one. Thus, an appropriate
measure quality of an approximative procedure is the probability of producing
incorrect realizations. Besides providing accurate realizations, a simulation
algorithm should also be efficient, that is the number of subextremal functions
taken into consideration should be minimal.

1.4.1 Simulation Efficiency

We first investigate the efficiency of an exact algorithm which we measure in
terms of the expected number of spectral functions that need to be simulated
until a stopping criterion is satisfied.

Oesting et al. (2013) consider this value as criterion for a good choice of a
spectral representation, that is, the choice of the density g in representation
(1.11). In this case, according to the stopping rule (1.12), on average

Qg = Emin

{

m ∈ N : ess sup
f∈C

sup
x∈X

f(x)

g(f)Z(m)(x)
≤
∑m+1

j=1
Ej

}

spectral functions have to be considered. Decomposing the considered func-
tions into extremal and subextremal functions, this number can be computed

Qg = E

(

ess sup
f∈C

sup
x∈X

f(x)

g(f)Z(y)

)

. (1.17)

Thus, a transformation that yields the most efficient simulation algorithm,
can be found by minimizing (1.17) with respect to g. However, as this op-
timization problem is very difficult, Oesting et al. (2013) present a closely
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related class of replacement problems, which they show to be solved uniquely
by the normalized spectral representation, i.e. by g∗(f) = c−1 supx∈X f(x).
For this choice, the expression (1.17) can be bounded by cE[(infx∈X Z(x))−1]
which corresponds to the number of spectral functions considered according
to Algorithm 1.2.2 with C = c.

Adapting the stopping rules, we can modify the proof of Prop. 4.8 in
Oesting et al. (2013) to obtain the expected number of functions considered
in the exact procedures given by Algorithms 1.2.2 and 1.2.4, respectively.

Proposition 1.4.1. Let {Ej}j≥1 be independent standard exponentially dis-
tributed random variables.

1. Independently of the Ej’s, let Yj, j ≥ 1, be independent copies of a non-
negative stochastic process Y satisfying EY (x) = 1 for all x ∈ X and
supx∈X Y (x) ≤ C a.s. for some C > 0. Further, let Z be defined by (1.4).
Then, we have

Emin

{

k ≥ 1 :
C

∑k+1
j=1 Ej

≤ inf
x∈X

k
max
i=1

Yi(x)
∑i

j=1 Ej

}

= CE

[

(infx∈X Z(x))−1
]

.

2. Independently of the Ej’s, let Fj, j ≥ 1, be independent copies of a nonneg-
ative stochastic process F satisfying E

∫

X F (x) dx = 1, supx∈X F (x) ≤ C
a.s. for some C > 0 and (1.9) for some R > 0. Further, let Sj ∼iid

Unif(X ⊕ b(o,R)), j ≥ 1, and Z be defined by (1.8). Then, we have

Emin

{

k ≥ 1 :
C

∑k+1
j=1 Ej

≤ inf
x∈X

k
max
i=1

Fi(x− Si)
∑i

j=1 Ej

}

= C · |X ⊕ b(o,R)| · E
[

(infx∈X Z(x))−1
]

.

Remark 1.4.2. By Thm. 2.2 in Dombry and Éyi-Minko (2012), the quantity
E
[

(infx∈X Z(x))−1 ] is finite for any compact set X ⊂ Rd and any sample-
continuous max-stable process Z with unit Fréchet margins.

1.4.2 Simulation Quality

In this subsection, we consider measures for the quality of simulation algo-
rithms that are not exact. In particular, we provide error estimates for Algo-
rithms 1.2.2 and 1.2.4 in the case that the underlying assumptions are not met
such that an approximative stopping rule is applied. Here, a realization pro-
duced by this algorithm is not correct if there exists at least one extremal func-
tion that is not taken into consideration by the algorithm, i.e. some (ζi,ψi) ∈ Φ
which already satisfies the stopping criterion. Using Slivnyak’s formula from
Poisson point process theory (cf. Stoyan et al., 1995), we obtain the follow-
ing assessments for the probability of obtaining an incorrect realization when
applying Algorithms 1.2.2 and 1.2.4 with C = C∗ and R = R∗, respectively.
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Proposition 1.4.3. Let Z be a max-stable process with spectral representation
(1.4). Then, for any C∗ > 0, we have

P

(

∃(ζi, Yi) ∈ Φ+ : ζiC
∗ < inf

x∈X

i−1
max
j=1

ζjYj(x)

)

(1.18)

≤
√

E

(

supx∈X (Y (x)/Z(x))2
)

·
√

P (supx∈X Y (x) > C∗).

Proof. First, we note that a point (ζi, Yi) ∈ Φ+ that is not considered due to
the stopping criterion necessarily satisfies supx∈X Y (x) > C∗. Thus, we have

P

(

∃(ζi, Yi) ∈ Φ+ : ζiC
∗ < inf

x∈X

i−1
max
j=1

ζjYj(x)

)

≤ E

(

∑

(ζ,Y )∈Φ 1{ζY (x)≥max(ζ̃,Ỹ )∈Φ\{(ζ,Y )} ζ̃Ỹ (x) for some x∈X}1{supx∈X Y (x)>C∗}

)

=

∫ ∞

0
ζ−2

E

(

1{ζY (x)>Z(x) for some x∈X}1{supx∈X Y (x)>C∗}

)

dζ

= E

(

sup
x∈X

Y (x)

Z(x)
1{supx∈X Y (x)>C∗}

)

,

where we use Slivnyak’s formula (Stoyan et al., 1995) to obtain the equality
of the second and the third lines. The assertion of the proposition is obtained
by applying the Cauchy-Schwarz inequality.

For the error estimate for Algorithm 1.2.4, we assume that the shape func-
tion F is uniformly bounded by some constant C > 0, which is the case for
all the examples considered in this chapter. In the case that F is unbounded,
the additional error can be assessed in a similar way as in Proposition 1.4.3.

Proposition 1.4.4. Let Z be a max-stable process with spectral representation
(1.8). Further assume that the corresponding shape function F satisfies (1.10).
Then, for any R∗ > 0, we have

P

(

∃(ζi, Si, Fi) ∈ Φ+ : Si /∈ X ⊕ b(o,R∗)

)

(1.19)

≤ E

[

(infx∈X Z(x))−1
]

·
∫

Rd\(X⊕b(o,R∗))
E (supx∈X F (x− s)) ds.

Proof. Using Slivnyak’s Theorem (Stoyan et al., 1995), we obtain that

P

(

∃(ζi, Si, Fi) ∈ Φ+ : Si /∈ X ⊕ b(o,R∗)

)

≤ E

(

∑

(ζ,F (·−S))∈Φ
1ζF (x−S)≥max(ζ̃,F̃ (·−S̃))∈Φ\{(ζ,F (·−S))} ζ̃F̃ (x−S̃) for some x∈X

)

=

∫

Rd\(X⊕b(o,R∗))

∫ ∞

0
ζ−2

E
(

1ζF (x−S)≥Z(x) for some x∈X

)

dζ ds
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=

∫

Rd\(X⊕b(o,R∗))
E

(

sup
x∈X

F (x− s)

Z(x)

)

ds.

The assertion of the proposition follows from the fact that supx∈X
F (x−s)
Z(x) ≤

(supx∈X F (x− s)) · (infx∈X Z(x))−1.

Remark 1.4.5. Note that the integral
∫

Rd E (supx∈X F (x− s)) ds is finite if
Z has continuous sample paths (Resnick and Roy, 1991). Thus, indeed, the
error bound tends to zero as R∗ → ∞.

Besides using these error estimates, there are also other diagnostic tools to
assess the quality of a simulation algorithm. In particular, it can be checked
whether the marginal distributions are reproduced correctly. As an example
one can calculate the Kolmogorov-Smirnov distance between the simulated
and the theoretical marginal distributions as Oesting et al. (2012) did in a sim-
ulation study to compare different simulation algorithms for Brown-Resnick
processes. Also graphical tools, like Q-Q plots for the marginal distribution, or
a plot of the extremal coefficient function θ which, for a stationary max-stable
process Z, is defined by

P(Z(t+ h) ≤ x, Z(t) ≤ x) = P(Z(t) ≤ x)θ(h), h ∈ R
d,

(Schlather and Tawn, 2003), can be used. See Subsection 1.5.2, for an example.

1.5 Examples

In this section, we discuss the choice of an accurate simulation procedure for
several examples, including some of the most popular models of max-stable
processes. For more details on these models, see Chapter ??.

1.5.1 Moving Maxima Processes

As the first example, we consider moving maxima processes, i.e. mixed moving
maxima processes (1.8) with a deterministic shape function F . Of particular
interest are the processes devised by Smith (1990) who uses probability den-
sities as shape functions. If such a density function f is radially decreasing,
the transformed Lebesgue density g(f) = c−1 supx∈X f(x) from the normal-
ized spectral representation allows for convenient sampling (cf. Oesting et al.,
2013, for explicit formulae). Thus, the normalized spectral representation can
be used for an exact simulation. Simulation studies in Oesting et al. (2013) for
the case of f being a 1- or 2-dimensional Gaussian density show that the usage
of the normalized spectral representation also yields remarkable improvements
with respect to the number of considered spectral functions in comparison to
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FIGURE 1.2
Diagnostic plots based on 1000 realizations of an extremal Gaussian process
simulated via Algorithm 1.2.2 with C = 5. Left: Q-Q plot of the empirical dis-
tribution of logZ(0) against the standard Gumbel distribution. Right: Empir-
ical extremal coefficients in comparison to the theoretical extremal coefficient
function (red line).

Schlather’s (2002) algorithm even though the latter one provides an approx-
imation only. Thus, simulation via the normalized spectral representation is
preferable both with respect to simulation accuracy and costs.

1.5.2 Extremal Gaussian and Extremal t Processes

Secondly, we consider extremal Gaussian processes (Schlather, 2002), i.e. pro-
cesses of the form

Z(x) = maxi≥1 ζi
√
2πmax{0,Wi(x)}, x ∈ X ,

where Wi, i ≥ 1, are independent copies of some stationary standard Gaussian
process W with correlation function ρ(h), independently from the Poisson
point process {ζi}i≥1 with intensity ζ−2dζ.

Here, for simulation based on the normalized spectral representation, one
has to sample from the modified law c−1 max{0, supx∈X w(x)}P(W ∈ dw).
Although this can be done by MCMC methods, such a sampling procedure is
very complex and time-consuming compared to sampling from W . Thus, we
consider approximations via Algorithm 1.2.2. According to the approximation
procedure described in Subsection 1.2.1, we choose some value C∗ such that
P(supx∈X

√
2πW (x) > B) is small and run Algorithm 1.2.2 with C = C∗.

To show the performance of the approximation procedure, we choose the
bound C∗ = 5 and simulate 1000 realizations of an extremal Gaussian pro-
cess on {0, 0.5, . . . , 4.5, 5} based on Gaussian processes Wi with correlation
function ρ(h) = exp(−|h|). Figure 1.5.2 shows a Q-Q plot of the empirical
distribution of logZ(0) against the standard Gumbel distribution and the
empirical extremal coefficients in comparison to the theoretical extremal co-
efficient function θ(h) = 1 +

√

(1− ρ(h))/2. As both the Q-Q plot and the
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extremal coefficient indicate, the approximation is quite accurate even though
the bound C = 5 is rather small (this corresponds to a bound B ≈ 2 for W ).

The class of extremal Gaussian processes is generalized by extremal-t pro-
cesses (Opitz, 2013)

Z(x) = maxi≥1 ζicα max{0,Wi(x)}α, x ∈ X ,

where cα =
√
π2−(α−2)/2Γ((α + 1)/2)−1 for α > 0. For small or moderate

values of α, similar techniques as in the case of the extremal Gaussian process
are suitable for simulation. If α gets large, the extremal t-process resembles a
Brown-Resnick process which we will discuss in the following example.

1.5.3 Brown-Resnick Processes

As the last example, we consider the challenging case of Brown-Resnick pro-
cesses as defined 1.3. Kabluchko et al. (2009) show that the Brown-Resnick
process is stationary and that its law – and, thus, the choice of an appropriate
simulation procedure – depends on γ only. Therefore, Z is called Brown-
Resnick process associated to the semi-variogram γ.

First, we note that, as for extremal Gaussian processes, the simulation of
normalized spectral functions is very complex, but could be done by MCMC
methods. Thus, in the following, we will focus on alternative approaches.

In the case thatW is a stationary process, that is, Z is a so-called geometric
Gaussian process (Davison et al., 2012), the semi-variogram is bounded and
the variance function is constant. Thus, the process can be approximated by
Algorithm 1.2.2 with an appropriate value C which, however, may be much
larger than in the Gaussian case, in particular, if the variance σ2 is large. As
W is stationary, so are all finite approximations.

If, however, γ (and, thus, also the variance function) is unbounded, the
single spectral functions Yi(x) = exp(Wi(x) − σ2(x)/2) and the finite ap-
proximations exhibit clear non-stationary trends. Similarly to the example in
Section 1.1 (Figure 1.1) where a fixed number of spectral functions is consid-
ered, these problems also occur in case of Algorithm 1.2.2. Figure 1.5.3 shows
realizations of the original Brown-Resnick process (Brown and Resnick, 1977)
with W being a standard Brownian motion, i.e. a Brown-Resnick process as-
sociated to semi-variogram γ(h) = 1

2 |h|, for several values of C. Note that the
realizations look non-stationary even for large values of C.

Oesting et al. (2012) introduce several equivalent representations in order
to generate approximations that indicate stationarity. For example, they con-
sider random shifts of the spectral functions. Let ζi, Wi, i ≥ 1, be as above,
and, independently from ζi, Wi, let Xi, i ≥ 1, be independent random vectors
in Rd distributed according to some measure µ. Then, for the Brown-Resnick
process Z associated to the semi-variogram γ, we have

Z(x) =d maxi≥1 ζi exp
(

Wi(x−Xi)− σ2(x−Xi)/2
)

, x ∈ X . (1.20)
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FIGURE 1.3
Ten approximations of logZ on the interval [−50, 50] by applying Algorithm
1.2.2 with C = 3, 10, 25 (from left to right). Here, Z is a Brown-Resnick
process associated to the semi-variogram γ(h) = 1

2 |h|.

By these shifts, intuitively, the trend should vanish even in finite approxima-
tions. Thus, it is worthwhile to apply Algorithm 1.2.2 to this representation
with shifted spectral functions. Results based on a uniform shift in [−50, 50]
are illustrated in Figure 1.5.3. Indeed, the approximations look stationary.
However, even for large C, the values of Z are too small in general.

Further, one can also use Algorithm 1.2.4 to simulate Brown-Resnick pro-
cesses provided that they allow for a mixed moving maxima representation.
By construction — apart on some effects close to the boundary as a result
of neglecting the spectral functions with Si /∈ X ⊕ b(o,R) — this algorithm
leads to stationary finite approximations. As already mentioned at the end of
Section 1.3, a mixed moving maxima representation exists if

lim∥x∥→∞(W (x)− σ2(x)) a.s. (1.21)

By Kabluchko et al. (2009), in the case d = 1, condition (1.21) is satisfied if
limx→∞ γ(x)/ log x > 8.

In general, the simulation of shape functions according to the law given
by 1.16 is rather sophisticated. However, some cases allow for simplifications.
For the case of the original Brown-Resnick process where W is a standard
Brownian motion, Engelke et al. (2011) make use of the Markovian structure
of the Brownian motion to write F as a diffusion that allows for convenient
simulation. Oesting et al. (2012) consider the case of a general Brown-Resnick
process on some grid pZd for some p > 0 with a mixed moving maxima
representation where the shifts Si are restricted to the same grid. Using the
fact that, without loss of generality, the process W can be assumed to be 0
at the origin o almost surely, they show that F has the same distribution
as λ exp(W (·) − γ(·)) | τ = o where τ = inf{argmaxx∈pZd W (·) − γ(·)} and
λ = p−dP(τ = o). Thus, F can be simulated via an acceptance-rejection
algorithm accepting only those functions W − γ that attain their maximum
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FIGURE 1.4
Ten approximations of logZ on the interval [−50, 50] obtained by different
procedures where Z is a Brown-Resnick process associated γ(h) = 1

2 |h|.
Left/Middle: Approximations by Algorithm 1.2.2 with C = 3 and C = 10,
respectively, applied to representation (1.20) with randomly shifted spectral
functions. Here, the spectral functions are shifted according to a uniform dis-
tribution on [−50, 50]. Right: Approximations by Algorithm 1.2.4.

at the origin. As the function F is bounded by λ, Algorithm 1.2.4 can be used
for simulation neglecting the spectral functions with Si /∈ X ⊕ b(o,R). Figure
1.5.3 shows realizations of the original Brown-Resnick process simulated by
this method. Indeed, the realizations look stationary and also the marginal
distributions fit well. However, in the case of a dense grid, the rejection rate
might be very high. Thus, Oesting et al. (2012) propose a generalization for
processes on Rd, restricting to those spectral functions whose maximum is in
some specific set. By an appropriate choice of this set, the simulation error
can be controlled. See Oesting et al. (2012) for more details.

In a recent publication, Dieker and Mikosch (2014) propose an alternative
representation that allows for an exact simulation of Brown-Resnick processes.
For an arbitrary probability measure µ on Rd, it holds that

Z(x) =d max
i≥1

ζi
exp(Wi(x−Xi)− γ(x−Xi))

∫

Rd exp(Wi(y −Xi)− γ(y −Xi))µ(dy)
, x ∈ X ,

where {(ζi, Xi)}i≥1 are the points of a Poisson point process on (0,∞) × Rd

with intensity ζ−2 dζ×µ(dx), independently from the Gaussian processes Wi,
i ≥ 1, with W (o) = 0 a.s. and semi-variogram γ.

For simulating Z on some set {x1, . . . , xn}, Dieker and Mikosch (2014)
propose to choose µ = n−1

∑m
k=1 δxk

. Noting further thatW (x−y) =d W (x)−
W (y) because of W (o) = 0 and the fact that W has stationary increments,
we obtain Z(x) =d maxi≥1 ζiYi(x) with

Yi(x) = n
exp(Wi(x)− γ(x− Ti))

∑n
k=1 exp(Wi(xk)− γ(xk − Ti))

, x ∈ {x1, . . . , xn}. (1.22)
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As Yi is bounded by n, this representation allows for exact simulation on
{x1, . . . , xn} via Algorithm 1.2.2 with C = n. For a comparison of this
method to an exact simulation via the normalized spectral representation,
it should be mentioned that the spectral functions Yi in (1.22) can be simu-
lated straightforwardly while the simulation of the normalized spectral func-
tions requires MCMC techniques. However, the bound C = n for the stop-
ping rule increases linearly in the number of simulation locations which, by
Proposition 1.4.1, implies that also the number of spectral functions that
have to be considered increases at least linearly. This makes it very difficult
to simulate the process on a dense grid in order to approximate the contin-
uous sample paths. Contrarily, in the case that all the simulation locations
are in some bounded area K, the bound for the normalized spectral rep-
resentation is always below E(supx∈K W (x)) and thus, due to Proposition
1.4.1, the expected number of considered spectral functions is smaller than
E(supx∈K W (x))E((infx∈K W (x))−1).

As the above discussion shows, in general, it is quite difficult to decide
which spectral representation to choose for the simulation of a Brown-Resnick
process. This choice depends both on the corresponding semi-variogram and
on the simulation domain. Oesting et al. (2012) conduct a simulation study
to compare the performance of the simulation procedures based on the orig-
inal spectral representation, random shifts and the mixed moving maxima
representation. We refer to their paper for more details on the results and
indications for an appropriate choice of the simulation procedure.

1.6 Software Packages

Finally, we review two R packages that provide functions for the simulation
of max-stable processes. The package RandomFields (Schlather et al., 2014)
contains the max-stable models RPsmith for (mixed) moving maxima pro-
cesses, RPschlather for extremal Gaussian processes and RPbrownresnick for
Brown-Resnick processes (including geometric Gaussian processes). The cor-
responding shape function, correlation function and semi-variogram, respec-
tively can be chosen from a large variety of basic models and combinations of
them. All max-stable models can be simulated using the function RFsimulate.
For mixed moving maxima processes, the exact simulation procedure via the
normalized spectral representation (Oesting et al., 2013) is implemented. The
simulation of Brown-Resnick processes is based on methods discussed in Oest-
ing et al. (2012), namely simulation via the original spectral representation,
via random shifts and via the mixed moving maxima representation. If the
user does not specify the simulation method (RPbrorig, RPbrshifted and
RPbrmixed, respectively), an appropriate procedure is chosen automatically.
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Further, the package SpatialExtremes (Ribatet et al., 2013) allows for
the simulation of max-stable processes via the function rmaxstab. By specify-
ing the parameter cov.mod, the user can choose between different models: for
example, gauss is used for a moving maxima process with Gaussian density
function as shape function and brown for Brown-Resnick processes associated
to a semi-variogram of the type γ(h) = a∥h∥α, a > 0, 0 < α ≤ 2. Further,
extremal Gaussian, extremal-t and geometric Gaussian processes can be simu-
lated for some classes of correlation functions. Here, the simulation procedures
used are mainly based on Schlather’s (2002) algorithms. For Brown-Resnick
processes, random shifts are used as well.
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