
1

Spatial Extremes and max-stable processes

Mathieu Ribatet

University of Montpellier 2 / University of Lyon 1

Clément Dombry

University of Besançon
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Abstract

This chapter aims at being a crash course on max-stable processes with an
emphasis on their use for modeling spatial extremes. We will see how max-
stable processes are defined through a simple spectral representation and how
it is possible to derive the finite dimensional distributions from it. Because the
goal of this crash course is also to be of practical interest, existing parametric
max-stable models will be introduced and discussed. A useful measure of spa-
tial dependence, the extremal coe�cient function, will be introduced as well
as several approaches to fit max-stable processes to spatial data. Finally we
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4 Extreme Value Modeling and Risk Analysis: Methods and Applications

open the discussion with other alternatives to max-stable processes to model
spatial extremes.

1.1 Introduction

In Chapter 1 the extreme value theory was introduced in a finite dimensional
setting, i.e., extremes of random variables or vectors. In this chapter we go
a bit further by investigating infinite dimensional extremes, i.e., extremes of
stochastic processes. Although it is possible to work with weaker assumption,
we will work with sample path continuous stochastic processes to ensure that
random variables such as sup{Y (x) : x 2 X} where X is a compact subset of
Rd, d � 1, are well defined.

Similarly to univariate extreme value analysis, the aim of modelling spatial
extremes is typically related to risk assessments which in a spatial context
can take several forms. For example if one observes a precipitation field Y (x)
over a given catchment X ⇢ R2, one could be interested in evaluating the
probability that the total rainfall amount over this catchment exceeds a given
critical quantity zcrit > 0, i.e.,

Pr

⇢

Z

X
Y (x)dx > zcrit

�

.

One could also be interested in characterizing the distribution of the largest
“pointwise” rainfall amount in this catchment, i.e., evaluating probabilities of
the form

Pr

⇢

sup
x2X

Y (x) > z

�

, z > 0.

Clearly evaluating the above probabilities is even more challenging than
what we usually do in a univeriate or multivariate setting since, for instance,
it requires the knowledge of the distribution of the random variable Y (x)
for all x 2 X as well as capturing the spatial dependence of the process
{Y (x) : x 2 X}.

1.2 Max-stable processes

1.2.1 Spectral representation

Before introducing the spectral representation of max-stable processes, it
seems necessary to motivate their use for modelling spatial extremes. Sim-
ilarly to the asymptotic arguments justifying the use of the generalized ex-
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treme value and the generalized Pareto distributions, see Part I, max-stable
processes appear to be a sensible choice for modelling pointwise maxima.

Definition 1. Let Z1, Z2, . . . , be a sequence of independent copies of a
stochastic process {Z(x) : x 2 X}. If for each n � 1 there exist normaliz-
ing functions a

n

> 0 and b

n

2 R such that

max
i=1,...,n Zi

� b

n

a

n

d
= Z, (1.1)

then {Z(x) : x 2 X} is said to be max-stable. Recall that equality in distribu-
tion for continuous sample path stochastic processes on a compact set means
that all finite dimensional distributions are identical.

Based on (1.1) it is not clear why max-stable processes are especially rele-
vant as far as spatial extremes are of concern. Similarly to the univariate case,
their use is based on asymptotic arguments.

Theorem 1. (de Haan, 1984) Let Y1, Y2, . . . be a sequence of independent
copies of a stochastic process {Y (x) : x 2 X} with continuous sample paths.
If there exist continuous functions c

n

> 0 and d

n

2 R such that the limiting
process {Z(x) : x 2 X} defined by

max
i=1,...,n Yi

(x)� d

n

(x)

c

n

(x)
�! Z(x), x 2 X , n ! 1, (1.2)

is non degenerate, then the process {Z(x) : x 2 X} has to be a max-stable
process. Note that the convergence in (1.2) refers to weak convergence in the
space of continuous functions on X .

Remark. To be consistent with the univariate extreme value theory, Theorem 1
implies that the marginal distribution of {Z(x) : x 2 X} have to be generalized
extreme value distributed.

The statistical motivation for using max-stable processes for modelling
spatial extremes is the following. Based on n independent replicates, we will
assume that the limiting process {Z(x) : x 2 X} is likely to be a good can-
didate for modeling the partial maxima process {max

i=1,...,n Yi

(x) : x 2 X},
as far as n is large enough. The logic beyond this is exactly the same as for
univariate extreme value analysis where one prefers to work directly with the
asymptotic distribution of block maxima, i.e., the generalized extreme value
distribution, rather than estimating the distribution of {Y (x) : x 2 X} and
raising it to the power n to estimate the distribution of the partial maxima.

So far, neither Definition 1 nor Theorem 1 give a precise description of
max-stable processes, and it would be nice to get a better picture them as for
the univariate and multivariate cases. This description is known as the spectral
representation of max-stable processes. Since we know that the marginal dis-
tributions of {Z(x) : x 2 X} have to be generalized extreme value distributed,
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it is more convenient to set the margins to a given distribution. A widely used
choice is to use unit Fréchet margins, i.e., Pr{Z(x)  z} = exp(�1/z) for all
x 2 X and z > 0, and with these specific margins {Z(x) : x 2 X} is said to
be a simple max-stable process.

Theorem 2. (de Haan, 1984; Penrose, 1992) Any non degenerate simple
max-stable process {Z(x) : x 2 X} defined on a compact set X ⇢ Rd, d � 1,
with continuous sample paths satisfies

Z(x)
d
= max

i�1
⇣

i

f

i

(x), x 2 X , (1.3)

where {(⇣
i

, f

i

) : i � 1} are the points of a Poisson process on (0,1)⇥ C with
intensity ⇣�2d⇣⌫(df) for some locally finite measure ⌫ defined on the space C
of non-negative continuous functions on X such that

Z

f(x)⌫(df) = 1, x 2 X .

Before giving more details on Theorem 2, some comments worth to be men-
tioned. First the spectral characterization (1.3) is not unique in the sense that
di↵erent measures ⌫ can lead to the same max-stable process {Z(x) : x 2 X}.
Second the restriction on non-negative function is only required for conve-
nience and, since the spectral characterization consists in taking pointwise
maxima over an infinite number of such functions, one can consider real func-
tions as long as ⌫{f(x) > 0} > 0 for all x 2 X . Lastly an important special
case of (1.3) is when ⌫ is a probability measure since in that case the spectral
representation may be rewritten as

Z(x)
d
= max

i�1
⇣

i

Y

i

(x), x 2 X ,

where {⇣
i

: i � 1} are the points of a Poisson process on (0,1), Y1, Y2, . . . a se-
quence of independent copies of a non-negative stochastic process {Y (x) : x 2
X} with continuous sample paths and such that E{Y (x)} = 1 for all x 2 X .

Similarly to the radial / (pseudo) angular decomposition for multivariate
extremes, the points {⇣

i

: i � 1} in (1.3) play the role of the radius while
the stochastic processes {Y

i

(x) : i � 1} the role of the angle. The spectral
representation suggests a rainfall storm based interpretation due to Smith
(1990) which, even though has no theoretical justification, has the merits of
clarifying things to readers not familiar with point processes and stochastic
processes. Think about a rainfall storm impacting a region X which has an
overall intensity ⇣ and spatial extent driven by {Y (x) : x 2 X}, i.e., ⇣Y (x)
corresponds to the amount of rain for this storm at location x 2 X . With this
conceptualization, max-stable processes appear as the pointwise maxima over
an infinite number of storms {(⇣

i

, {Y
i

(x) : x 2 X}) : i � 1}.
The left panel of Figure 1.1 is an illustration of this rainfall storm interpre-

tation where the simulated max-stable process was obtained from 100 storms.
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FIGURE 1.1
Simulation of a max-stable process on X = [�5, 5] from its spectral charac-
terization. For this example we take Y (x) =

p
2⇡max{0,W (x)} where W is a

standard Gaussian process with a Gaussian correlation function, i.e., ⇢(h) =
exp(�h

2). Left: The grey curves corresponds to {⇣
i

Y

i

(x) : i = 1, . . . , 100} and
the black one to the pointwise maxima. Right: Decomposition of the spectral
functions as extremal (red curves) and non extremal (blue curves) functions.

We can see that some storms did not contribute to the pointwise maxima at
any location x 2 X . This is illustrated by the right panel of Figure 1.1 which
decomposed the Poisson process � = {'

i

= ⇣

i

Y

i

: i � 1} into two sub–point
processes

�+ = {' 2 � : 9x 2 X , '(x) = Z(x)},
�� = {' 2 � : '(x) < Z(x), x 2 X}.

According to Dombry et al. (2013) and Dombry and Éyi-Minko (2013), the
atoms of the sub–point processes �+ and �� are called the extremal and sub–
extremal functions respectively. We will see later in Section ?? that this de-
composition of � into extremal and sub–extremal functions will be especially
convenient for likelihood based inference as well as for deriving the regular
conditional distributions of max-stable processes in the related chapter.

1.2.2 Parametric max-stable process families

In this section we introduced existing parametric max-stable process families
and will do so in an historical order. The first model that appeared in the
literature is what is called the Smith process (Smith, 1990) also sometimes
referred to the Gaussian extreme value process (Schlather, 2002). This process
is based on a particular mixed moving maxima representation (see Section ??
for more details), i.e.,

Z(x) = max
i�1

⇣

i

'(x� U

i

; 0,⌃), x 2 X , (1.4)
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where {(⇣
i

, U

i

) : i � 1} are the points of a Poisson process on (0,1)⇥Rd with
intensity measure ⇣�2d⇣du and '(·; 0,⌃) denotes the d–variable Gaussian den-
sity with mean 0 and covariance matrix ⌃. Although this process is interesting
for historical reasons, it is rarely useful because of a lack of flexibility—the
shape of multivariate Gaussian densities being too restrictive.

The second model was introduced about 10 years after in the seminal paper
of Schlather (2002) who introduced what is called the Schlather process, also
sometimes referred to as the extremal Gaussian process. This model is defined
by

Z(x) =
p
2⇡max

i�1
⇣

i

max{0,W
i

(x)}, x 2 X , (1.5)

where {W
i

(x) : x 2 X} are independent copies of a stationary Gaussian pro-
cess with correlation function ⇢. Note that the scaling factor

p
2⇡ is required

to have
p
2⇡E[max{0,W (x)}] = 1 for all x 2 X .

The third model historically introduced is the Brown–Resnick process
(Brown and Resnick, 1977) and, having a look at the date of publication,
should have been introduced first. But this model was well known to be di�-
cult to work with and, apart from Husler and Reiss (1989), no further work
was done until that of Kabluchko et al. (2009). This process is defined by

Z(x) = max
i�1

⇣

i

exp {W
i

(x)� �(x)} , x 2 X , (1.6)

where {W
i

(x) : x 2 X} are independent copies of a zero mean Gaussian pro-
cess with stationary increments and semi-variogram �(h) = Var{W (x+ h)�
W (x)}/2. It is interesting to note that the Smith model is a special case
of (1.6) with

W (x) = x

T⌃�1
X, X ⇠ N(0,⌃),

and whose semi-variogram therefore satisfies 2�(x) = x

T⌃�1Var(X)⌃�1
x =

x

T⌃�1
x.

Finally the last model introduced so far is the extremal–t process. It was
first introduced in a multivariate setting by Nikoloulopoulos et al. (2009), in a
spatial context by Davison et al. (2012) and Ribatet and Sedki (2013). Finally
Opitz (2013) derived a spectral characterization for this process

Z(x) = c

⌫

max
i�1

⇣

i

max{0,W
i

(x)}⌫ , x 2 X , (1.7)

where ⌫ � 1, {W
i

(x) : x 2 X} are independent copies of a stationary Gaussian
process with correlation function ⇢ and

c

⌫

=
p
⇡2�(⌫�2)/2�

✓

⌫ + 1

2

◆�1

,

where � is the Gamma function. As is seen clearly in (1.7), the Schlather
process is a special case of the extremal–t model with ⌫ = 1.

Figure 1.2 plots one realization from each of the max-stable process intro-
duced above. As expected we can see that the Smith process produces artificial
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FIGURE 1.2
One realization on a 250⇥ 250 grid from each of the max-stable model intro-
duced in Section 1.2.2. From left to right: Smith where ⌃ is the identity matrix;
Schlather with ⇢(h) = exp{�(h/2)1.5}; Brown–Resnick with �(h) = (h/2)1.5;
and Extremal–t with ⌫ = 5 and ⇢(h) = exp{�(h/4)1.5}. Note that for visual-
ization purposes the margins were transformed to standard Gumbel margins.

surfaces; thus confirming its lack of flexibility already mentioned earlier. The
other processes produce sample surfaces that are much more wiggly—though
we set the dependence parameters such that the sample surfaces are smooth
enough. Compared to the Brown–Resnick and the extremal–t processes, we
can see that the Schlather process tends to give larger areas where the largest
values occur. We will see later that is a consequence of this model that does
not allow for spatial independence.

1.2.3 Finite dimensional distributions

From (1.3), it is possible to derive the finite dimensional distribution of
{Z(x) : x 2 X}. More precisely for any x = (x1, . . . , xk

) 2 X k, k � 1, and
z = (z1, . . . , zk) 2 (0,1)k, we have

Pr{Z(z)  z} = Pr [no atom (⇣, Y ) 2 � : ⇣Y (x
j

) > z

j

for some j 2 {1, . . . , k}]

= exp



�
Z 1

0
Pr

⇢

⇣ > min
j=1,...,k

z

j

Y (x
j

)

�

⇣

�2d⇣

�

= exp {�V

x

(z1, . . . , zk)} ,

where the function

V

x

(z1, . . . , zk) = E
⇢

max
j=1,...,k

Y (x
j

)

z

j

�

, (1.8)

called the exponent function, fully characterizes the joint distribution of Z(x).
Working a bit with (1.8), it is straightforward to see that

V

x

(z, . . . , z) =
✓(x)

z

, ✓(x) = E
⇢

max
j=1,...,k

Y (x
j

)

�

. (1.9)

In the above equation ✓(x) is called the (k-dimensional) extremal coe�cient
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TABLE 1.1
Bivariate distributions for each parametric max-stable model introduced in
Section 1.2.2. Smith model: a

2(h) = h

T⌃�1
h. Schlather: ⇢ is the correla-

tion function of {W (x) : x 2 X} in (1.5). Brown–Resnick: � is the semi-
variogram of {W (x) : x 2 X} in (1.6). Extremal–t: ⇢ is the correlation function
of {W (x) : x 2 X} and b

2 = {1� ⇢(h)2}/(⌫ + 1) in (1.7).

Model � log Pr{Z(x)  z1, Z(x+ h)  z2}
Smith 1

z1
�
n

a(h)
2 + 1

a(h) log
z2
z1

o

+ 1
z2
�
n

a(h)
2 + 1

a(h) log
z1
z2

o

Schlather 1
2

⇣

1
z1

+ 1
z2

⌘n

1 +
q

1� 2{1+⇢(h)}z1z2
(z1+z2)2

o

Brown–Resnick 1
z1
�

⇢

q

�(h)
2 +

q

1
2�(h) log

z2
z1

�

+ 1
z2
�

⇢

q

�(h)
2 +

q

1
2�(h) log

z1
z2

�

Extremal–t 1
z1
T

⌫+1

⇢

1
b

⇣

z2
z1

⌘1/⌫
� ⇢(h)

b

�

+ 1
z2
T

⌫+1

⇢

1
b

⇣

z1
z2

⌘1/⌫
� ⇢(h)

b

�

and is a summary measure of dependence across the element of the random
vector Z(x). Because of the independence property between the radial and
angular components of multivariate extremes, the extremal coe�cient is as
expected independent of the radius, i.e., the level z appearing in V

x

(z, . . . , z),
and focus only on the dependence.

In a spatial context, it is more convenient to restrict our attention to the
bivariate case and define what is known as the extremal coe�cient function,
i.e.,

✓ : h 7�! E [max {Y (x), Y (x+ h)}] . (1.10)

The extremal coe�cient function takes values in [1, 2] where the lower
bound corresponds to perfect dependence and the upper one to independence.
Indeed for these two limiting cases we have respectively

Pr {Z(x+ h)  z | Z(x)  z} = Pr{Z(x+ h)  z}✓(h)�1

=

(

1, perfect dependence,

Pr{Z(x+ h)  z}, independence.

It has to be noted that (1.8) can be di�cult to evaluate explicitly when k >

2 and this is why the finite dimensional distribution of max-stable processes
were first restricted to the bivariate case only. These bivariate distributions
are given in Table 1.1. However working a bit with (1.8), one can derive an
expression for V

x

much easier to work with when k > 2.
It is straightforward to see that the exponent function is homogeneous of

order �1, i.e.,

V

x

(cz1, . . . , czk) = c

�1
V

x

(z1, . . . , zk), c > 0.
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In particular, since V
z

is positive and provided it is continuously di↵erentiable,
Euler’s homogeneous theorem implies that

V

x

=
k

X

j=1

z

�1
j

Pr

⇢

Y (x
`

)

z

`

 Y (x
j

)

z

j

, ` 6= j

�

. (1.11)

As an example, (1.11) is more tractable than (1.8) for Brown–Resnick
processes since in that case we have (Huser and Davison, 2013)

Pr

⇢

Y (x
`

)

z

`

 Y (x
j

)

z

j

, ` 6= j

�

= Pr

⇢

W (x
`

)�W (x
j

)  �(x
`

)� �(x
j

) + log
z

`

z

j

, ` 6= j

�

= Pr

⇢

W (x
`

� x

j

)  �(x
`

)� �(x
j

) + log
z

`

z

j

, ` 6= j

�

= �

✓

log
z

`

z

j

; ` 6= j;µ
j

,⌃
j

◆

,

where the second equality used the fact that W has stationary increments
and where µ

j

= {�(x
`

) � �(x
j

), ` 6= j}, ⌃
j

= {�(x
m

� x

j

) + �(x
n

� x

j

) �
�(x

m

� x

n

)}
m,n6=j

and �(·;µ
j

,⌃
j

) denotes the (k � 1)-variate cumulative
normal distribution with mean vector µ

j

and covariance matrix ⌃
j

.
Closed forms for the k–variate distribution for the extremal–t can be found

using the same lines as for the Brown–Resnick process but by using the con-
ditional distribution instead of the stationary increment property and is left
as an exercise.

1.3 Dependence measure for spatial extremes

In this section we investigate how the dependence between extreme events
evolves across space. In what we shall call conventional geostatistics, to be
opposed to what we aim for, i.e., a geostatistics of extremes, the underly-
ing statistical model is usually based on a Gaussian process W whose semi
variogram

�(h) =
1

2
E
⇥

{W (x)�W (x+ h)}2
⇤

, x, h 2 X , (1.12)

plays a fundamental role in driving how dependence evolve in space.
Unfortunately the semi-variogram � is not suitable for spatial extremes

are of interest. For instance since for simple max-stable processes the margins
are unit Fréchet, E{Z(x)} = 1 for all x 2 X and the semi-variogram func-
tion does not exist. Therefore there is a pressing need to define a summary
dependence measure similar to the semi-variogram but devoted to extreme
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FIGURE 1.3
Empirical F–madogram (left) and corresponding extremal coe�cients (right)
for the Swiss precipitation data of the SpatialExtremes package (Ribatet
et al., 2013). The grey points are pairwise estimates while the black ones are
binned estimates obtained from 200 bins.

values. Among the various tools introduced, one of the most relevant ones is
the F–madogram (Cooley et al., 2006)

⌫

F

(h) =
1

2
E [|F{Z(x+ h)}� F{Z(x)}|] , x, h 2 X , (1.13)

where F denotes the cumulative distribution function of Z(x), x 2 X .
Contrary to the semi-variogram, the F–madogram is well defined since
F{Z(x)} ⇠ U(0, 1) and therefore has expectation 1/2. The F–madogram
is particularly convenient for spatial extremes since it has strong connections
with the extremal coe�cient function. Indeed using the fact that |a � b| =
2max(a, b)� a� b, it is not di�cult to show that

✓(h) =
1 + 2⌫

F

(h)

1� 2⌫
F

(h)
, h 2 X . (1.14)

Clearly the F–madogram is easily estimated by its empirical counterpart,
i.e.,

⌫̂

F

(h) =
1

2n(n+ 1)

n

X

i=1

|R
i

(x)�R

i

(x+ h)|, R

i

(x) =
n

X

`=1

1{Z`(x)Zi(x)},

(1.15)
where Z1, . . . , Zn

are independent replicates of a max-stable process (not nec-
essarily simple) Z. To reduce sample variability, it is often a good idea to use
a binned version of (1.15), i.e., to average ⌫̂

F

over suitable classes of distance,
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i.e.,

⌫̃

F

(h) =
1

2n(n+ 1)|N
h

|
X

x,y2Nh

n

X

i=1

|R
i

(x)�R

i

(y)|,

where
N

h

= {x, y 2 {x1, . . . , xk

} : |kx� yk � h| < �} ,
and some suitable binning radius � > 0.

Figure 1.3 plots the empirical estimates for the F–madogram and the
related pairwise extremal coe�cients for the Swiss precipitation data that are
freely available from the SpatialExtremes package (Ribatet et al., 2013). As
expected we can see that the spatial dependence decreases as the distance lag
increases but appears to be still persistent beyond 100km.

1.4 Inference

Although theory for max-stable processes was well developed, several decades
have passed to find a suitable framework to use max-stable processes for mod-
eling spatial extremes. The main reason for this was the lack of closed form
for the likelihood of such processes. To see this recall that the k–variate dis-
tribution function is given by

Pr{Z(x1)  z1, . . . , Z(x
k

)  z

k

} = exp{�V

x

(z1, . . . , zk)},

and hence the related probability density function is

f

x

(z1, . . . , zk) = exp{�V

x

(z1, . . . , zk)}
X

⌧2Pk

w(⌧), (1.16)

with

w(⌧) = (�1)|⌧ |
|⌧ |
Y

j=1

@

|⌧j |

@z

⌧j

V (z1, . . . , zk),

and where P
k

is the set of all possible partition of the set {x1, . . . , xk

}, ⌧ =
(⌧1, . . . , ⌧`), |⌧ | = ` is the size of the partition ⌧ and @

|⌧j |
/@z

⌧j denotes the
mixed partial derivatives with respect to the elements of the j-th element of
the partition ⌧ . As emphasized by Dombry et al. (2013); Ribatet (2013), the
number of possible partitions of {x1, . . . , xk

} corresponds to Bell numbers and
hence yield a combinatorial explosion even for moderate values of k—when
k = 10 there is around 115,000 partitions.

1.4.1 Pairwise likelihood

Due to this computational burden, the maximum likelihood estimator cannot
be used and other approaches have been proposed. A first attempt was to
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use least squares to estimate the dependence parameters from the empirical
extremal coe�cient estimates (Smith, 1990)—using the F -madogram for in-
stance. This approach is not completely satisfactory since it focuses only on
the dependence parameters and hence prediction at unobserved location is
not possible. In some sense a likelihood based approach was missing and this
is exactly what was proposed with the work of Padoan et al. (2010). Padoan
et al. (2010) propose to use the maximum pairwise likelihood estimator, i.e.,
maximizing

`p{ ; z1(x), . . . , zn(x)} =
n

X

`=1

k�1
X

i=1

k

X

j=i+1

w

i,j

log f{z
`

(x
i

), z
`

(x
j

); }, (1.17)

where  are the parameter to be estimated and {w
i,j

, 1  i < j  k} are
suitable weights that can be used either to improve e�ciency or to reduce the
computational cost.

As mentioned in Part III, composite likelihoods belong to mis-specified
models or more accurately under-specified models as we typically assume that
the bivariate densities appearing in (1.17) are correct.

Remark. It is important to remember that composite likelihoods are not gen-
uine likelihoods nor they give an approximation of the likelihood. Composite
likelihoods provide a framework to define estimators based on unbiased esti-
mating equations.

As any maximum composite likelihood estimator, and under mild regu-
larity conditions, the maximum pairwise likelihood estimator share similar
properties to that of the maximum likelihood estimator. More precisely, it is
consistent, asymptotically normal— see Part III for more details.

The advantage of a likelihood based approach is that it is straightforward
to extend it to more complex statistical models. For instance so far we re-
stricted our attention to simple max-stable processes, i.e., with unit Fréchet
margins, and this assumption is clearly unrealistic for concrete applications
where it is expected that the intensity of extreme events may vary spatially.
Up to slight modification of (1.17), one can allow for varying marginal param-
eters. More precisely let {Z̃(x), x 2 X} be a max-stable process such that
Z̃(x) ⇠ GEV{µ(x),�(x), ⇠(x)} for all x 2 X and define the mapping

t

x

: z̃ 7�!
⇢

1 + ⇠(x)
z̃ � µ(x)

�(x)

�1/⇠(x)

.

Then the pointwise transformed stochastic process {t
x

{Z̃(x)}, x 2 X} is a
simple max-stable process and the log-pairwise likelihood for Z̃ is therefore

`

p

{ ; z̃1(x), . . . , z̃n(x)} = `p{ ; tx{z̃1(x)}, . . . , tx{z̃n(x)}}+
n

X

`=1

k�1
X

i=1

k

X

j=i+1

log |J{z̃
`

(x
i

)}J{z̃
`

(x
i

)}|,
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where the additional term correspond to the logarithm of the Jacobian coming
from the mapping t

x

.
To gain e�ciency some authors try to use the triplet-wise likelihood in

place of the pairwise likelihood (Genton et al., 2011; Huser and Davison, 2013)
but simulation studies indicate that the gain in e�ciency is small compared to
the large computational increase unless the spatial process is really smooth—
which is unfortunately not the case for many environmental processes.

1.4.2 Full likelihood

Recently some authors tried to performed a full likelihood inference for max-
stable processes Wadsworth and Tawn (2014) whose framework relies on the
derivation of the conditional distributions of max-stable processes given by
Dombry and Éyi-Minko (2013) and Dombry et al. (2013)—see the chapter
on conditional simulations for more details. Although (1.17) appears rather
complicated it is possible to get a better understanding of this expression in
terms of the extremal and non extremal point processes �+ and �� introduced
in Section 1.2.1.

Having observed one single realization of {Z(x) : x 2 X} at locations
x1, . . . , xk

2 X , we have |�+| 2 {1, . . . , k} since a single extremal function
might contribute to {Z(x1), . . . , Z(x

k

)} at more than one location. It thus
defines a random partition ✓ of the set {x1, . . . , xk

} and using the terminol-
ogy of Wang and Stoev (2011) and Dombry and Éyi-Minko (2013), each of
these partitions define a hitting scenario. Using the conditional independence
property of the point processes �� and �+ and that of the extremal functions
(Dombry and Éyi-Minko, 2013), the contribution to the full likelihood of a
single realization from any simple max-stable processes with spectral charac-
terization (1.3) is

exp

(

�
Z

{z(x),1}
�

x

(u)du

)

X

⌧2Pk

|⌧ |
Y

j=1

�

x⌧j
(x

⌧j )

Z

{0,z(x⌧c
j
)}
�

x�⌧j |z(x⌧j ),x⌧j
(u)du,

(1.18)
where x

⌧j = {x 2 {x1, . . . , xk

} : x 2 ⌧

j

}, x
⌧

c
j

= {x 2 {x1, . . . , xk

} : x /2
⌧

j

}, �
x

is the intensity function of the Poisson point process �
x

= {'(x) 2
(0,1)k : ' 2 �}, i.e., for any Borel set A ⇢ (0,1)k,

⇤
x

(A) =

Z 1

0
Pr{⇣Y (x) 2 A}⇣�2d⇣ =

Z

A

�

x

(u)du,

and where �
x1|z,x2

(u), x1, x2 2 X , z,u > 0, is the conditional intensity func-
tion, i.e.,

�

x1|z,x2
(u) =

�(x1,x2){(u, z)}
�

x2(z)
.

Dombry et al. (2013) and Ribatet (2013) give closed forms for the intensity
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and conditional intensity functions for the max-stable processes introduced in
Section 1.2.2.

As expected (1.16) and (1.18) share the same structure and we now un-
derstand from the point process theory that

f

x

(z1, . . . , zk) = exp{�V

x

(z1, . . . , zk)}

| {z }

contribution of the
sub-extremal functions

⇥
X

⌧2Pk

w(⌧).

| {z }

contribution of each
hitting scenario

Apart from getting a better understanding of (1.16), (1.18) is still not
tractable and maximizing the log-likelihood appears to be numerically impos-
sible. However if the hitting scenario is known to be ⌧ = (⌧1, . . . , ⌧`), then the
contribution to the full likelihood is much more tractable and becomes

exp

(

�
Z

{z(x),1}
�

x

(u)du

)

`

Y

j=1

�

x⌧j
(x

⌧j )

Z

{0,z(x⌧c
j
)}
�

x⌧c
j
|z(x⌧j ),x⌧j

(u)du.

This is what suggest Wadsworth and Tawn (2014) since when daily observa-
tions are available, one knows which partition yields to the annual maxima.

1.5 Discussion

The aim of this chapter was to introduce the basic foundations for using
max-stable processes for modelling spatial extremes. Although max-stable
processes are asymptotically justified models, other modelling strategies are
possible and we will cover them briefly in this discussion.

Probably one of the most famous competitors to max-stable process are
latent variable models. These models relies on a univariate extreme value
argument only and assume that

Z̃(x) | µ(x),�(x), ⇠(x) ⇠ GEV{µ(x),�(x), ⇠(x)},

i.e., for each location x 2 X , the random variable Y (x) has a generalized ex-
treme value distribution with location, scale and shape parameters equal to
{µ(x),�(x), ⇠(x)}. Typically a conditional independence assumption is sup-
posed, i.e., conditionally on the marginal parameters, Z̃(x1) is independent
of Z̃(x2) for any x1, x2 2 X 2. As {µ(x),�(x), ⇠(x)} are allowed to vary in
space, it is typically assumed that [{µ(x),�(x), ⇠(x)} : x 2 X}] is a Gaussian
process whose mean function depends on some relevant covariates and whose
covariance function is chosen among available parametric covariance function
families, e.g., Whittle–Matern. Since the likelihood of this model involves in-
tractable integrals, to bypass this hurdle one often has resort to the Bayesian
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paradigm combined with Monte–Carlo Markov chains algorithms—see Davi-
son et al. (2012) for more details. The main drawback of this model is that,
because of the conditional independence assumption, the spatial dependence
is completely ignored and that, for any x 2 X , Z̃(x) is not extreme value
distributed anymore. However in practice if the aim of the study is to charac-
terize the pointwise distribution of extremes then it is so far probably one of
the best approaches.

To take into account the spatial dependence, one could think of using
copulas (Sang and Gelfand, 2009). For instance one could use the Gaussian
copula, i.e., having observed {Z̃(x) : x 2 X} at locations x1, . . . , xk

2 X , we
have

Pr{Z̃(x1)  z̃1, . . . , Z̃(x
k

)  z̃

k

} = �
⇢

�

��1(u1), . . . ,�
�1(u

k

)
 

,

where �
⇢

is the multivariate normal distribution with zero mean and correla-
tion matrix {⇢(x

i

� x

j

) : i, j = 1, . . . , k}, ⇢ a parametric correlation function,
��1 the quantile function of a standard normal distribution and

u

j

= exp

(

�
✓

1 + ⇠(x
j

)
z̃

j

� µ(x
j

)

�(x
j

)

◆�1/⇠(xj)
)

, 1 + ⇠(x
j

)
y

j

� µ(x
j

)

�(x
j

)
> 0,

for j = 1, . . . , k. As for the latent variable model, one typically assume that
the marginal parameters [{µ(x),�(x), ⇠(x)} : x 2 X ] is a Gaussian process.

Although this type of models might seem relevant, they have the same
weaknesses than the use of copula for multivariate extremes: most often this
modelling strategy is not able to capture the spatial dependence of extremes
(Davison et al., 2012). One exception needs to be mentioned though: the use of
extreme value copulas but in that case it is equivalent to the use of max-stable
processes.

Finally one could be tempted to use asymptotic independent models for
modelling spatial extremes. If from a strict asymptotic point of view such
models might seem irrelevant as, in the tails, spatial extremes will behave
as a pure noise process with generalized extreme valued margins, they pos-
sess interesting properties that might be true for environmental processes and
that max-stable processes cannot have (Wadsworth and Tawn, 2012; Davi-
son et al., 2013). More precisely as shown by (1.9) the dependence structure
of max-stable process is independent of the level z. Asymptotically indepen-
dent models allow that the spatial dependence structure becomes increasingly
weaker as we go far in the tail.
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processes. Journal de la Société Française de Statistique, 154(1):138–150.

Ribatet, M., Singleton, R., and Team, R. C. (2013). SpatialExtremes: Mod-
elling Spatial Extremes. R package version 2.0-1.

Sang, H. and Gelfand, A. (2009). Hierarchical modeling for extreme values
observed over space and time. Environmental and Ecological Statistics,
16(3):407–426.

Schlather, M. (2002). Models for stationary max-stable random fields. Ex-
tremes, 5(1):33–44.

Smith, R. L. (1990). Max-stable processes and spatial extreme. Unpublished
manuscript.

Wadsworth, J. L. and Tawn, J. A. (2012). Dependence modelling for spatial
extremes. Biometrika, 99(2):253–272.

Wadsworth, J. L. and Tawn, J. A. (2014). E�cient inference for spa-
tial extreme value processes associated to log-gaussian random functions.
Biometrika, 101(1):1–15.

Wang, Y. and Stoev, S. A. (2011). Conditional sampling for spectrally discrete
max-stable random fields. Advances in Applied Probability, 443:461–483.





References

Brown, B. M. and Resnick, S. I. (1977). Extreme values of independent
stochastic processes. Journal of Applied Probability, 14:732–739.

Cooley, D., Naveau, P., and Poncet, P. (2006). Variograms for spatial max-
stable random fields. In Bertail, P., Soulier, P., Doukhan, P., Bickel, P.,
Diggle, P., Fienberg, S., Gather, U., Olkin, I., and Zeger, S., editors, Depen-
dence in Probability and Statistics, volume 187 of Lecture Notes in Statistics,
pages 373–390. Springer New York.

Davison, A., Huser, R., and Thibaud, E. (2013). Geostatistics of depen-
dent and asymptotically independent extremes. Mathematical Geosciences,
45(5):511–529.

Davison, A., Padoan, S., and Ribatet, M. (2012). Statistical modelling of
spatial extremes. Statistical Science, 7(2):161–186.

de Haan, L. (1984). A spectral representation for max-stable processes. The
Annals of Probability, 12(4):1194–1204.
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de la Société Française de Statistique, 154(2):156–177.

Ribatet, M. and Sedki, M. (2013). Extreme value copulas and max-stable
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