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Abstract
Max-stable processes are well established models for spatial extremes. In this chap-
ter, we address the prediction problem: suppose a max-stable process is observed at
some locations only, how can we use these observations to predict the behavior of
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the process at other unobserved locations? Mathematically, the prediction problem is
related to the conditional distribution of the process given the observations. Recently,
Dombry and Eyi-Minko (2013) provided an explicit theoretical formula for the con-
ditional distributions of max-stable processes. The result relies on the spectral repre-
sentation of the max-stable process as the pointwise maxima over an infinite number
of spectral functions belonging to a Poisson point process. The effect of conditioning
on the Poisson point process is analyzed, resulting in the notions of hitting scenario
and extremal or subextremal functions. Due to the complexity of the structure of the
conditional distributions, conditional simulation appears at the same time challeng-
ing and important to assess characteristics that are analytically intractable such as the
conditional median or quantiles. The issue of conditional simulation was considered
by Dombry et al. (2012) who proposed a three step procedure for conditional sam-
pling. As the conditional simulation of the hitting scenario becomes computationally
very demanding even for a moderate number of conditioning points, a Gibbs sampler
approach was proposed for this step. The results are illustrated on some simulation
studies and we propose several diagnostics to check the performance.

1.1 Introduction: the prediction problem and conditional distri-
bution

In classical geostatistics, Gaussian random fields play a central role in the statis-
tical theory based on the Central Limit Theorem. In a similar manner, max-stable
random fields turn out to be fundamental models for spatial extremes since they ex-
tend the well known univariate and multivariate extreme value theory to the infinite
dimensional setting. Max-stable random fields arise naturally when considering the
component-wise maxima of a large number of independent and identically random
fields and seeking for a limit under a suitable affine normalization.

In this multivariate or functional setting, the notion of dependence is crucial: how
does an extreme event occurring in some region affect the behavior of the random
field at other locations? This is related to the prediction problem which is an impor-
tant and long-standing challenge in extreme value theory. Suppose that a max-stable
random field Z = (Z(x))x∈X is observed at some stations x1, . . . , xk ∈ X only,
yielding

Z(x1) = z1, . . . , Z(xk) = zk. (1.1)
How can we take benefit from these observations and predict the random field Z
at other places? We are naturally lead to consider the conditional distribution of
(Z(x))x∈X given the observations (1.1).

In the classical Gaussian framework, i.e., if Z is a centered Gaussian random
field, it is well known that the corresponding conditional distribution remains Gaus-
sian and simple formulas give the conditional mean and covariance structure. This
theory is strongly linked with the theory of Hilbert spaces: for example, the condi-
tional expectation of Z(x) can be obtained as the L2-projection of the random field η
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onto the Gaussian subspace generated by the variables {Z(xi), 1 ≤ i ≤ k}, resulting
in the linear combination

E [Z(x) | Z(x1), . . . , Z(xk)] = α1(x)Z(x1) + · · ·+ αk(x)Z(xk), x ∈ X ,

for some weight functions αi(x), i = 1, . . . , n, that are obtained via the kriging
theory (cf. Chilès and Delfiner (1999), for example). A conditional simulation of Z
given the observations (1.1) is then easily performed by setting

Z(x) = Z̃(x) + α1(x)(z1 − Z̃(x1)) + · · ·+ αk(x)(zk − Z̃(xk)), x ∈ X ,

where Z̃ denotes the realization of an unconditional simulation of the random field
Z.

In extreme value theory, the prediction problem turns out to be more difficult. A
similar kriging theory for max-stable processes is very appealing and a first approach
in that direction was done by Davis and Resnick (1989, 1993). They introduced a L1-
metric between max-stable variables and proposed a kind of projection onto max-
stable spaces. To some extent, this work mimics the corresponding L2-theory for
Gaussian spaces. However, unlike the exceptional Gaussian case, there is no clear
relationship between the predictor obtained by projection onto the max-stable space
generated by the variables {Z(xi), 1 ≤ i ≤ k} and the conditional distributions of
η with respect to these variables. Conditional distributions have been considered first
byWeintraub (1991) in the case of a bivariate vector. Amajor contribution is the work
by Wang and Stoev (2011) where the authors consider max-linear random fields, a
special class of max-stable random fields with discrete spectral measure, and give
an exact expression of the conditional distributions as well as efficient algorithms.
The max-linear structure plays an essential role in their work and provides major
simplifications since in this case Z admits the simple representation

Z(x) =
q
∨

j=1

Fjfj(x), x ∈ X ,

where the symbol
∨

denotes the maximum, f1, . . . , fq are deterministic functions
and F1, . . . , Fq are i.i.d. random variables with unit Fréchet distribution. The au-
thors determine the conditional distributions of (Fj)1≤j≤q given the observations
(1.1) and deduce the conditional distribution of Z. Another approach by Oesting and
Schlather (2014) deals with max-stable random fields with a mixed moving maxima
representation.

We present and discuss here the recent result from Dombry and Eyi-Minko
(2013) and Dombry et al. (2013) providing formulas for the conditional distributions
of max-stable random fields as well as efficient algorithm for conditional sampling.
Note that the results can be stated in the more general framework of max-infinitely
divisible processes, but for the sake of simplicity, we stick here to the max-stable
case. Section 2 reviews the theoretical results on conditional distribution: we intro-
duce the notion of extremal functions and hitting scenarios and explicit the exact
distribution of the max-stable process given the observations. Here, we focus on the
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framework of regular models that yields tractable formulas. In Section 3, we put the
emphasis on efficient simulation and discuss a 3-step procedure for conditional sam-
pling. A difficult step is the conditional sampling for the hitting scenario for which a
Gibbs sampler approach is proposed. Section 4 is devoted to simulation studies and
we present several diagnostics to check the performance of the methods suggested.

1.2 Conditional distribution of max-stable processes
In the sequel, we consider Z a sample continuous max-stable random field on X ⊂
Rd. We can assume without loss of generality that Z has unit Fréchet margins. Thus,
the process Z possesses a spectral representation (see for example de Haan (1984),
Penrose (1992), Schlather (2002) or de Haan and Ferreira (2006))

Z(x) = max
i≥1

ζiYi(x), x ∈ X , (1.2)

where {ζi}i≥1 are the points of a Poisson process on (0,∞) with intensity ζ−2d ζ,
(Yi)i≥1 are independent replicates of a non-negative continuous sample path stochas-
tic process Y such that E[Y (x)] = 1 for all x ∈ X , (ζi)i≥1 and (Yi)i≥1 are indepen-
dent.

We now introduce a fundamental object in our analysis which is a function-
valued Poisson point process associated with the representation (1.2). Let C =
C(X , [0,+∞)) be the space of continuous non-negative functions on X . We con-
sider the C-valued point process Φ = {φi}i≥1 where φi(x) = ζiYi(x) with ζi and Yi

as in (1.2). It is well known (de Haan and Ferreira, 2006) to verify that Φ is a Poisson
point process with intensity measure Λ given by

Λ(A) =

∫ ∞

0
P[ζY ∈ A]ζ−2dζ, A ⊂ C Borel.

Our strategy is to work on the level of the Poisson point process Φ rather than on
the level of the max-stable process Z and to derive the conditional distribution of Φ
given the observations (1.1). The conditional distribution of Z is then deduced easily.

1.2.1 Extremal functions, subextremal functions and hitting scenarios
The observations (1.1) together with the spectral representation (1.2) yield the con-
straint

max
i≥1

φi(x1) = z1, . . . ,max
i≥1

φi(xk) = zk.

A first step in our strategy is the analysis of the way how these constraints are met,
i.e. the way how the maxima are attained. An important preliminary remark is that
for each j = 1, · · · , k, the maximum Z(xj) = maxi≥1 φi(xj) is almost surely
attained by a unique function φi, which can be easily seen by the fact that the point
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process {ϕi(xj), i ≥ 1} on (0,∞) has intensity ζ−2dζ. This leads to the following
definition.

Definition 1.2.1. The (almost surely) unique function φ ∈ Φ such that φ(xj) =
Z(xj) is called the extremal function at xj and denoted by ϕ+

xj
.

Furthermore, we define the extremal point process Φ+ = {ϕ+
xj
}1≤j≤k as the set of

extremal functions with respect to the conditioning points {xj}1≤j≤k.

Note that the notation Φ+ = {ϕ+
xj
}1≤j≤k may include the multiple occurrence

of some functions for example if ϕ+
x1

= ϕ+
x2
. This is not taken into account in the

extremal point process Φ+ where each point has multiplicity one. The possible re-
dundancies are captured by the so-called hitting scenario. We first introduce this
notion with simple examples. Assume first that there are k = 2 conditioning points
x1, x2 and hence two extremal functions ϕ+

x1
and ϕ+

x2
. Two cases can occur:

• either ϕ+
x1

= ϕ+
x2
, i.e. the maxima at points x1 and x2 are reached by the same

extremal function, in this case the hitting scenario is θ = {x1, x2};

• or ϕ+
x1

̸= ϕ+
x2
, i.e. the maxima at points x1 and x2 are reached by different

extremal functions, in this case the hitting scenario is θ = ({x1}, {x2}).

In the case of k = 3 conditioning points, there are 5 different possibilities for the
hitting scenario:

({x1, x2, x3}), ({x1, x2}, {x3}), ({x1, x3}, {x2}),

({x1}, {x2, x3}) and ({x1}, {x2}, {x3}).

The interpretation is straightforward: for instance, the hitting scenario θ =
({x1, x3}, {x2}) corresponds to the case when the maxima at x1 and x3 are attained
by the same extremal function but the maximum at x2 corresponds to a different
extremal event, i.e. ϕ+

x1
= ϕ+

x3
̸= ϕ+

x2
. The general definition is as follows.

Definition 1.2.2. The hitting scenario θ is a random partition (θ1, . . . , θℓ) of the
conditioning points {x1, · · · , xk} such that for any j1 ̸= j2, xj1 and xj2 are in the
same component of θ if and only if ϕ+

j1
= ϕ+

j2
.

The hitting scenario θ takes into account the redundancies in Φ+ =
{ϕ+

x1
, · · · ,ϕ+

xk
} and it is straightforward that the number of blocks ℓ of θ is exactly

the number of distinct extremal functions and hence the cardinality of Φ+. Hence we
can rewrite Φ+ = {ϕ+

1 , · · · ,ϕ
+
ℓ } where ϕ

+
j = ϕ+

x for all x ∈ θj .
So far, we considered only those functions φi that hit the maximum Z at some

conditioning points {xj}1≤j≤k. The remaining functions are called sub-extremal, as
in the following definition.

Definition 1.2.3. A function φ ∈ Φ satisfying φ(xj) < Z(xj) for all 1 ≤ j ≤ k is
called subextremal.
The set of subextremal functions is called the subextremal point process Φ−.



6 Extreme Value Modeling and Risk Analysis: Methods and Applications

This yields a disjoint decomposition of the point process Φ = Φ+ ∪ Φ− into its
extremal and subextremal parts. This is illustrated in Figure 1.2.1 where the extremal
functions (black) and the subextremal functions (gray) are depicted as well as the
corresponding hitting scenarios.
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FIGURE 1.1
Two realizations of the Poisson point process Φ and of the corresponding hitting
scenario θ with conditioning points xi = i, i = 1, · · · , 4 represented by the circles.
Left: the hitting scenario is θ = ({x1}, {x2, x3}, {x4}). Right: the hitting scenario
is θ = ({x1, x2}, {x3, x4}).

A key result in the study of the conditional distribution is the following theorem
providing the joint distribution of (θ,Φ+,Φ−). We denote by Pk the set of partitions
of {x1, . . . , xk} and by Mp(C) the set of C-valued point measures. We introduce
some vectorial notation. Let x = (x1, . . . , xk) and for τ = (τ1, . . . , τℓ) ∈ Pk, we
introduce xτj = (x)x∈τj . For any vector s = (s1, . . . , sm) ∈ Xm and any function
f : X → R, we note f(s) = (f(s1), . . . , f(sm)). If f1, f2 : X → Rm are two
functions, the notation f1(s) < f2(s) means that f1(sj) < f2(sj), j = 1, . . . ,m.

Theorem 1.2.4. For any partition τ = (τ1, . . . , τℓ) in Pk and any Borel setsA ⊂ Cℓ

and B ⊂ Mp(C), we have

P[θ = τ, (ϕ+
1 , . . . ,ϕ

+
ℓ ) ∈ A,Φ− ∈ B]

=

∫

Cℓ

1{maxj′ ̸=j fj′ (xτj
)<fj(xτj

), j=1,...,ℓ,}1{(f1,...,fℓ)∈A} · · ·

· · ·P
[

Φ ∈ B and ∀φ ∈ Φ, φ(x) < max
1≤j≤ℓ

fj(x)

]

Λ(df1) · · ·Λ(dfℓ).

The main technical tool for this proof is the Mecke-Slivniack formula from
stochastic geometry, see e.g. Stoyan et al. (1987). We sketch here the main lines
of the proof.

Proof. First note that the event {θ = τ, (ϕ+
1 , . . . ,ϕ

+
ℓ ) ∈ A, Φ− ∈ B} is realized if

and only if there exists a ℓ-tuple (φ1, · · · ,φℓ) ∈ Φℓ satisfying the following condi-
tions:
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i) Φ+ = {φ1, . . . ,φℓ}

ii) Φ− = Φ \ {φ1, . . . ,φℓ};

iii) θ = τ ;

iv) (φ1, . . . ,φℓ) ∈ A;

v) Φ− ∈ B.

Clearly, if such a ℓ-tuple does exist, it is necessarily unique and equal to
(ϕ+

1 , . . . ,ϕ
+
ℓ ). We deduce that the probability of interest can be written in the form

P[θ = τ, (ϕ+
1 , . . . ,ϕ

+
ℓ ) ∈ A,Φ− ∈ B]

= E

⎡

⎣

∑

(φ1,··· ,φℓ)∈Φℓ

F (φ1, . . . ,φℓ,Φ \ {φ1, . . . ,φℓ})

⎤

⎦ (1.3)

with F : Cℓ ×Mp(C) → {0, 1} defined by

F (φ1, . . . ,φℓ,Φ \ {φ1, . . . ,φℓ}) =
{

1 if conditions i)-v) are satisfied
0 otherwise .

By the Slyvniak-Mecke formula (Stoyan et al., 1987), we deduce that the expectation
(1.3) is equal to

∫

Cℓ

E[F (f1, . . . , fℓ,Φ)Λ(df1) · · ·Λ(dfℓ).

The theorem follows after a more explicit description of the functional F . Condition
i), ii) and iii) together are equivalent to

max
j′ ̸=j

φj′(xτj ) < φj(xτj ), j = 1, . . . , ℓ,

and
∀φ ∈ Φ \ {φ1, . . . ,φℓ}, φ(x) < max

1≤j≤ℓ
φj(x).

Condition iv) is clear and condition v) is equivalent to Φ \ {φ1, . . . ,φℓ} ∈ B.

1.2.2 The general structure of conditional distributions
In the previous section, we have seen that we are able to compute the joint distribution
of the hitting scenario θ, the extremal functions Φ+ and the subextremal functions
Φ−. We now consider the conditional joint distribution given the observations (1.1).
It can be computed on the basis of Theorem 1.2.4 only, because the observations
(Z(x1), . . . , Z(xk)) can be expressed as a function of θ and Φ+, i.e.

Z(xi) = ϕ+
j (xi) with j such that xi ∈ θj .
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Nevertheless, this computation is rather tedious and we give here the result without
proof and we consider only the so-called regular case. We say that the intensity mea-
sure Λ of the point process Φ is regular at some point s = (s1, . . . , sp) ∈ X p if
the marginal spectral measure Λ is absolutely regular with respect to the Lebesgue
measure on (0,+∞)k. More precisely, we define the marginal spectral measure

Λs(dz1, . . . , dzp) = Λ(f(s1) ∈ dz1, . . . , f(sp) ∈ dzp)

and assume that on (0,+∞)k

Λs(dz1, . . . , dzp) = λs(z1, . . . , zp)dz1 · · · dzp.

The proof of the following result and more details are to be found in Dombry and Eyi-
Minko (2013). Note that, in the non-regular case, some further analysis of the differ-
ent hitting scenarios is needed, as some hitting scenarios have to be excluded due to
the conditioning data. For examples of non-regular cases and conditional sampling
procedures in these cases, see Wang and Stoev (2011) and Oesting and Schlather
(2014) who consider max-linear and mixed moving maxima processes, respectively.

Theorem 1.2.5. Assume that Λ is regular at x = (x1, . . . , xk). For τ =
(τ1, . . . , τℓ) ∈ Pk and j = 1, . . . , ℓ, define Ij = {i : xi ∈ τj}, xτj = (xi)i∈Ij ,
zτj = (zi)i∈Ij , xτc

j
= (xi)i/∈Ij and zτc

j
= (zi)i/∈Ij . The conditional distribution of

(θ,Φ+,Φ−) with respect to the observations (1.1) is obtained as follows:

1. For τ = (τ1, . . . , τℓ) ∈ Pk,

P [θ = τ | Z(x) = z]

=
1

Cx,z

ℓ
∏

j=1

∫

{uj<zτc
j
}
λ(xτj

,xτc
j
)(zτj ,uj)duj , (1.4)

where the normalization constant Cx,z is such that
∑

τ∈Pk

P [θ = τ | Z(x) = z] = 1.

2. Conditionally on the observations (1.1) and on the hitting scenario τ =
(τ1, . . . , τℓ) ∈ Pk, the extremal functions ϕ+

1 , . . . ,ϕ
+
ℓ are independent with

distribution

P[ϕ+
j ∈ df | Z(x) = z, θ = τ ]

= Λ[df | f(xτj ) = zτj , f(xτc
j
) < zτc

j
], j = 1, . . . , ℓ. (1.5)

3. Conditionally on the observations (1.1), Φ− is independent of Φ+ =
{ϕ+

1 , . . . ,ϕ
+
ℓ } and has the same distribution as a Poisson Point process on

C with intensity 1{f(x)<z}Λ(df).
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This theorem allows to reconstruct the conditional distribution of the point pro-
cess Φ given the observations Z(x) = z via a three step procedure: construct first
the conditional hitting scenario θ and the extremal functions ϕ+

1 , . . . ,ϕ
+
ℓ (step 1 and

2), this yieldsΦ+; independently construct the conditional subextremal point process
Φ− (step 3); finally set Φ = Φ+ ∪ Φ− to obtain the conditional point process Φ.

The conditional probability appearing in steps 2 and 3 are quite natural. Given
the observations Z(x) = z and the hitting scenario θ = τ , the extremal function
ϕ+
j must satisfy the constraints ϕ

+
j (xτj ) = zτj and ϕ

+
j (xτc

j
) < zτc

j
so that it seems

natural to obtain the conditional intensity Λ given these constraints. Similarly, given
Z(x) = z, the subextremal functions ϕ ∈ Φ− must satisfy the constraint ϕ(x) < z

which naturally leads to the point process intensity Λ restricted to the set of functions
{f ∈ C, f(x) < z}.

1.2.3 Examples of regular models
Theorem 1.2.5 requires the assumption of regularity of the intensity measure Λ at
point x = (x1, . . . , xk). We now recall some popular models for max-stable process
that are regular and give the corresponding intensity function λx. These models are
mainly based on Gaussian or related distributions and provide a nice framework for
explicit computations.

Example 1: Brown-Resnick process
The Brown–Resnick process introduced by Kabluchko et al. (2009) is a stationary
max-stable random field on X = Rd corresponding to the case where Y (x) =
exp{W (x) − γ(x)} in (1.2) with W a centered Gaussian process with stationary
increments, semi-variogram γ and such thatW (o) = 0 almost surely. One can show
that the intensity measure Λ is regular at x ∈ X k as long as the covariance matrix
Σx of the random vector W (x) is positive definite. We denote by gx the Gaussian
density

gx(u) = (2π)−k/2det(Σx)
−1/2 exp

{

−
1

2
u
TΣ−1

x u

}

.

The marginal intensity measure is computed as follows: for all Borel set A ⊂
(0,+∞)k

Λx(A) =

∫ ∞

0
P[ζY (x) ∈ A]ζ−2dζ

=

∫ ∞

0
P[ζ exp{W (x)− γ(x)} ∈ A]ζ−2dζ

=

∫ ∞

0

∫

A
gx(log z− log ζ + γ(x))

k
∏

i=1

z−1
i ζ−2dζdz

=

∫

A
λx(z)dz
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with

λx(z) =

∫ ∞

0
gx(log z− log ζ + γ(x))

k
∏

i=1

z−1
i ζ−2dζ.

Some standard but tedious computations for Gaussian integrals reveal that

λx(z) = Cx exp

(

−
1

2
log zTQx log z+ Lx log z

) k
∏

i=1

z−1
i , z ∈ (0,∞)k,

with 1k = (1)i=1,...,k, γx = {γ(xi)}i=1,...,k,

Qx = Σ−1
x −

Σ−1
x 1k1TkΣ

−1
x

1TkΣ
−1
x 1k

, Lx =

(

1TkΣ
−1
x γx − 1

1TkΣ
−1
x 1k

1k − γx

)T

Σ−1
x ,

Cx = (2π)(1−k)/2det(Σx)
−1/2(1TkΣ

−1
x 1k)

−1/2 · · ·

· · · exp
{

1

2

(1TkΣ
−1
x γx − 1)2

1TkΣ
−1
x 1k

−
1

2
γT
xΣ

−1
x γx

}

.

See Dombry et al. (2013) for more details.

Example 2: Schlather process
The Schlather process (Schlather, 2002), also called extremal Gaussian process, is
a max-stable random field on X = Rd corresponding to the case where Y (x) =
(2π)1/2 max{0,W (x)} in (1.2) withW a standard Gaussian process with correlation
function ρ. For x ∈ X k and provided the covariance matrix Σx of the random vector
W (x) is positive definite, the intensity function is

λx(z) = π−(k−1)/2det(Σx)
−1/2ax(z)

−(k+1)/2Γ

(

k + 1

2

)

, z ∈ (0,+∞)k,

where ax(z) = zTΣ−1
x z. See Dombry et al. (2013) for more details on the computa-

tion.

Example 3: extremal t-process
The extremal t-process is a generalization of the Schlather process above obtained
with an extra parameter ν > 0 that yields more flexibility in the model. It is a
max-stable random field on X = Rd obtained with Y (x) = cν max{0,W (x)ν}
in (1.2) with W a standard Gaussian process with correlation function ρ and cν =√
π2−(ν−2)/2Γ((ν + 1)/2)−1. Provided the covariance matrix Σx of the random

vectorW (x) is positive definite, the intensity function is

λx(z) = cνν
−k+12(ν−2)/2π−k/2det(Σx)

−1/2ax(z, ν)
−(k+ν)/2 · · ·

· · ·Γ
(

k + ν

2

) k
∏

j=1

z(1−ν)/ν
j

for z ∈ (0,+∞)k and with ax(z, ν) = (z1/ν)TΣ−1
x z1/ν . See Ribatet (2013).
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1.2.4 Distribution of the extremal functions
The distribution of the extremal function appearing in Equation (1.5) is still quite
theoretical at this stage and it is unclear how one can sample from this distribution.
There are also theoretical questions related to its definition: the intensity measure Λ
has an infinite total mass and the conditioning event {f(xτj ) = zτj , f(xτc

j
) < zτc

j
}

has zero measure.
A way to bypass these difficulties is to consider only the finite dimensional mar-

gins of the extremal functions ϕ+
j and not the full random process. In practice, this

is enough for simulation purpose since one simulate the random field on a finite grid
only and not on the whole state space X . Let s = (s1, . . . , sm) ∈ Xm be the set of
new locations for the conditional sampling, we focus on the conditional distribution
of Z(s) | Z(x) = z. Equation (1.5) can be simplified if we assume the regularity
of the intensity measure Λ at (x, s) ∈ X k+m. We can then introduce the conditional
intensity function

λs|x,z(u) =
λ(s,x)(u, z)

λx(z)
, u ∈ (0,∞)m.

Equation (1.5) can be rewritten as

P
[

ϕ+
j (s) ∈ dv | Z(x) = z, θ = τ

]

=
1

Cj

(
∫

1{uj<zτc
j
}λ(s,xτc

j
)|xτj

,zτj
(v,uj)duj

)

dv (1.6)

with Cj the normalization constant

Cj =

∫

1{uj<zτc
j
}λ(s,xτc

j
)|xτj

,zτj
(v,uj)dujdv.

In words, the conditional law of ϕ+
j (s) is equal to the distribution of the random vari-

ableV obtained as the first component of (V,Uj)with density λ(s,xτc
j
)|xτj

,zτj
(v,u)

conditioned to the eventUj < zτc
j
.

Example 1 continued: Brown-Resnick process
In the case of Brown-Resnick process, for all (s,x) ∈ Xm+k, (u, z) ∈ (0,∞)m+k

and provided the covariance matrix Σ(s,x) is positive definite, the conditional inten-
sity function corresponds to a multivariate log-normal probability density function

λs|x,z(u) = (2π)−m/2det(Σs|x)
−1/2 · · ·

· · · exp
{

−
1

2
(logu− µs|x,z)

TΣ−1
s|x(logu− µs|x,z)

} m
∏

i=1

u−1
i ,

where µs|x,z ∈ Rm and Σs|x are the mean and covariance matrix of the underlying
normal distribution and are given by

Σ−1
s|x = JT

m,kQ(s,x)Jm,k

µs|x,z =
{

L(s,x)Jm,k − log zT J̃ T
m,kQ(s,x)Jm,k

}

Σs|x,
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with
Jm,k =

[

Idm
0k,m

]

, J̃m,k =

[

0m,k

Idk

]

,

where Idk denotes the k × k identity matrix and 0m,k them× k null matrix.

Example 2 continued: Schlather process
For (s,x) ∈ Xm+k, (u, z) ∈ Rm+k and provided that the covariance matrix Σ(s,x)

is positive definite, the conditional intensity function λs|x,z(u) corresponds to a mul-
tivariate Student distribution

λs|x,z(u) = π−m/2(k + 1)−m/2det(Σ̃)−1/2 · · ·

· · ·

{

1 +
(u− µ)T Σ̃−1(u− µ)

k + 1

}−(m+k+1)/2
Γ
(

m+k+1
2

)

Γ
(

k+1
2

) ,

with k + 1 degrees of freedom, location parameter µ = Σs:xΣ−1
x z and scale matrix

Σ̃ =
ax(z)

k + 1

(

Σs − Σs:xΣ
−1
x Σx:s

)

where
Σ(s,x) =

[

Σs Σs:x

Σx:s Σx

]

.

Example 3 continued: extremal t-process
The results are similar and generalize the case of Schlather processes. For (s,x) ∈
Xm+k, (u, z) ∈ Rm+k we set µ = Σs:xΣ−1

x z1/ν and

Σ̃ = (k + ν)−1ax(z, ν)(Σs − Σs:xΣ
−1
x Σx:s)

Then we have

λs|x,z(u) = π−m/2(k + ν)−m/2det(Σ̃)−1/2 · · ·

· · ·

{

1 +
(u1/ν − µ)T Σ̃−1(u1/ν − µ)

k + ν

}−(m+k+ν)/2

· · ·

· · ·
Γ
(

m+k+ν
2

)

Γ
(

k+ν
2

)

⎧

⎨

⎩

ν−m
m
∏

j=1

u−(ν−1)/ν
j

⎫

⎬

⎭

.

The last term in bracket in the previous equation corresponds to the Jacobian of the
mapping u -→ u1/ν . Hence we recognize that the conditional intensity function is
the density of the random vector T ν where T is a Student random vector with k + ν
degrees of freedom, mean µ and scale matrix Σ̃.
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1.3 Conditional sampling of max-stable processes
We now consider the conditional sampling of max-stable processes following Dom-
bry et al. (2013). We present a 3-step sampling procedure that is quite straightfor-
wardly derived from Theorem 1.2.5. We particularly focus on the first step and dis-
cuss a Gibbs sampling approach for the conditional hitting scenario.

1.3.1 A 3-step procedure for conditional sampling
Theorem 1.2.5 provides the conditional distribution of the point process Φ given the
observation (1.1). In practice, we are rather interested in the conditional simulation
of the max-stable process Z(s) at some location s = (s1, . . . , sm) ∈ Xm. The
connection is rather straightforward and is made explicit in the next proposition.

Proposition 1.3.1. Assume that Λ is regular at (x, s) ∈ X k+m. Consider the three–
step procedure:

1. Draw a random partition θ ∈ Pk with distribution (1.4);

2. Given θ = (τ1, . . . , τℓ), draw ℓ independent random vectors ϕ+
j (s), . . . ,ϕ

+
ℓ (s)

with distribution (1.6) and define the random vector

Z+(s) = max
j=1,...,ℓ

ϕ+
j (s).

3. Independently draw a Poisson point process {ζi}i≥1 on (0,∞) with intensity
ζ−2dζ and {Yi}i≥1 independent copies of Y , and define the random vector

Z−(s) = max
i≥1

ζiYi(s)1{ζiYi(x)<z}.

Then the random vector Z̃(s) = max {Z+(s), Z−(s)} follows the conditional dis-
tribution of Z(s) given Z(x) = z.

This 3-step procedure—which, in general, can also be applied in the non-regular
case — is illustrated on Figure 1.3.1 on the simple case of 1-D Smith storm process
with Gaussian shape.

In step 3, it is worth noting that Z−(s) follows the conditional distribution of
Z(s) given Z(x) < z. It is not difficult to show that the conditional cumulative
distribution function of Z(s) given Z(x) = z is given by

P[Z(s) ≤ a | Z(x) = z] = P[Z(s) ≤ a | Z(x) < z]
∑

τ∈Pk

πx,z(τ)
ℓ
∏

j=1

Fτ,j(a),
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FIGURE 1.2
The 3-step procedure for simulation sampling. First line: construction of the condi-
tional hitting scenario (step 1, left), of the extremal functions (step 2, middle) and
of the associated process Z+ (right). Second line: construction of the subextremal
functions (step 3, left), of the associated process Z− (middle) and of the conditioned
max-stable process Z̃ = max(Z+, Z−) (right).

where πx,z(τ) = P[θ = τ | Z(x) = z] is given by Equation (1.4) and

Fτ,j(a) = P[ϕ+
j (s) ≤ a | Z(x) = z, θ = τ ]

=

∫

{uj<zτc
j
,v<a} λ(s,xτc

j
)|xτj

,zτj
(v,uj)dujdv

∫

{uj<zτc
j
} λxτc

j
|xτj

,zτj
(uj)duj

.

1.3.2 Gibbs sampling for the conditional hitting scenario
In the above 3-step procedure for conditional sampling, step 2 requires to sample the
extremal functions. As we have seen in Examples 1, 2 and 3 where log-normal and
Student distributions appear, these can be of a relatively simple structure although
the imposed equality and inequality constraints may cause additional difficulties.
Step 3 can be performed by an unconditional simulation of the max-stable process
Z according to an appropriate spectral representation rejecting all those functions
that do not respect the constraints given by the conditioning data. For details on
unconditional simulation of max-stable processes we refer to corresponding chapter.
However, the conditional sampling of the hitting scenario (step 1) remains the most
challenging step. According to Equation (1.4), it is given by

πx,z(τ) = P[θ = τ | Z(x) = z] =
1

Cx,z

ℓ
∏

j=1

ωτj
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where
ωτj = λxτj

(zτj )

∫

{uj<zτc
j
}
λxτc

j
|xτj

,zτj
(uj)duj .

The last integral is the multivariate cumulative distribution of the conditional inten-
sity function λxc

τj
|xτj

,zτj
. Hence this is a multivariate log-normal cdf in the Brown-

Resnick model and a multivariate Student cdf in the Schlather or extremal-t models.
In the following, we assume that the weights ωτj can be accurately computed numeri-
cally and we focus on how to sample from πx,z, a discrete probability measure on the
set Pk of partition of {x1, · · · , xk}. The main difficulty is that the norming constant
Cx,z is unknown and a naive computation of this constant requires the computation
of the weight

∏ℓ
j=1 ωτj for all τ ∈ Pk. The number of terms, or equivalently the car-

dinality of Pk is given by the so-called Bell number Bk. The first 10 Bell numbers
are

k 1 2 3 4 5 6 7 8 9 10
Bk 1 2 5 15 52 203 877 4140 21147 115975

Hence determining the discrete probability πx,z requires the computation of 52
weights for k = 5 and 115975 for k = 10. Even worse, B15 ≈ 1.4 109 and
B20 ≈ 5.2 1013 so that the storage of all partitions is beyond the memory capaci-
ties of a standard computer. This is the so called phenomenon of combinatorial ex-
plosion and we need an alternative method to the naive discrete enumeration of all
possibilities.

It is customary to use Monte Carlo Markov Chain sampling when the target dis-
tribution is known up to a multiplicative constant only. The aim is to construct a
Markov chain with stationary distribution equal to the target distribution and with
good mixing properties. Two main methods exist: the Metropolis-Hasting algorithm
and the Gibbs sampler. We focus here on this second option.

For τ ∈ Pk and j ∈ {1, . . . , k}, let τ−j be the restriction of τ to the set
{x1, . . . , xk}. As usual with Gibbs samplers, our goal is to simulate from

P[θ ∈ · | θ−j = τ−j ], (1.7)

where θ ∈ Pk is a random partition which follows the target distribution πx,z(·) and
τ is typically the current state of the Markov chain. It is easy to see that the number
of possible updates according to (1.7) is always less than k, so that the combinatorial
explosion is avoided. Indeed, the point xj can be reallocated to any of the components
of τ−j or to a new component with a single point. We deduce that the number of
possible updates τ∗ ∈ Pk such that τ∗−j = τ−j is

b+ =

{

ℓ if {xj} is a partitioning set of τ ,
ℓ+ 1 if {xj} is not a partitioning set of τ ,

For illustration, consider the set {x1, x2, x3} and let τ = ({x1, x2}, {x3}). Then the
possible partitions τ∗ such that τ∗−2 = τ−2 are

({x1, x2}, {x3}), ({x1}, {x2}, {x3}), ({x1}, {x2, x3}), (1.8)
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while there exists only two partitions such that τ∗−3 = τ−3, i.e.,

({x1, x2}, {x3}), ({x1, x2, x3}).

For our work we use a random scan implementation of the Gibbs sampler (Liu
et al., 1995), meaning that one iteration of the Gibbs sampler selects randomly an
element of j ∈ {1, . . . , k} and then updates the current state τ according to the
proposal distribution (1.7). For the sake of simplicity, we use the uniform random
scan, i.e. j is selected according to the uniform distribution on {1, . . . , k}. Figure
1.3.2 shows two successive iterations of this random scan Gibbs sampler.

FIGURE 1.3
Two successive iterations of the Gibbs sampler for the conditional hitting scenario
with k = 8 conditioning points: after choosing a random point, the arrows show the
different possible reallocations, the bold arrow representing the chosen one.

The distribution (1.7) has nice properties. For all τ∗ ∈ Pk with τ∗−j = τ−j we
have

P[θ = τ∗ | θ−j = τ−j ] =
πx,z(τ∗)

∑

τ̃∈Pk

πx,z(τ̃)1{τ̃−j=τ−j}

∝
∏|τ∗|

k=1 wτ∗
k

∏|τ |
k=1 wτk

. (1.9)

Since, τ and τ∗ share many components, it can be seen that many factors in the right-
hand side of (1.9) cancel out except at most four of them. In the previous example
(1.8), the corresponding weights are

1,
w{x1,x2}

w{x1}w{x2}
,

w{x1,x2}w{x3}

w{x1}w{x2,x3}
respectively.

This makes the Gibbs sampler especially convenient.
We finally provide some practical details on the computation of these conditional

weights as well as a detailed algorithm (see Algorithm 1 in the supplementary mate-
rial).
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We first describe how each partition of {x1, . . . , xk} is stored. To illustrate con-
sider the set {x1, x2, x3} and the partition ({x1, x2}, {x3}). With our convention,
this partition is defined as (1, 1, 2) indicating that x1 and x2 belong to the same par-
titioning set labeled ’1’ and x3 belongs to the partitioning set ’2’. There exist several
equivalent notations for this partition: for example one can use (2, 2, 1) or (1, 1, 3).
However there is a one-one mapping betweenPk and the set

P∗
k =

{

(a1, . . . , ak), ∀i ∈ {2, . . . , k} : 1 = a1 ≤ ai ≤ max
1≤j<i

aj + 1, ai ∈ Z

}

.

Consequently we shall restrict our attention to the partitions that live in P∗
k and going

back to our example we see that (1, 1, 2) is valid but (2, 2, 1) and (1, 1, 3) are not.
For τ ∈ P∗

k of size ℓ, let r1 =
∑k

i=1 δτi=aj
and r2 =

∑k
i=1 δτi=b, i.e., the

number of conditioning locations that belong to the partitioning sets ’aj’ and ’b’
where b ∈ {1, . . . , b+} and

b+ =

{

ℓ (r1 = 1),

ℓ+ 1 (r1 ̸= 1).

Then the conditional probability distribution P[τj = b | τi = ai, ∀i ̸= j] given by
Equation (1.9) is proportional to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 (b = aj), (1.10a)
wτ∗,b/(wτ,bwτ,aj

) (r1 = 1, r2 ̸= 0, b ̸= aj), (1.10b)
wτ∗,bwτ∗,aj

/(wτ,bwτ,aj
) (r1 ̸= 1, r2 ̸= 0, b ̸= aj), (1.10c)

wτ∗,bwτ∗,aj
/wτ,aj

(r1 ̸= 1, r2 = 0, b ̸= aj), (1.10d)

where τ∗ = (a1, . . . , aj−1, b, aj+1, . . . , ak) and wτ,ai
= w{xk: τk=ai}. It is worth

stressing that although τ∗ does not necessarily belongs to P∗
k , it corresponds to a

unique partition of Pk and we can use the bijection Pk → P∗
k to recode τ∗ into an

element of P∗
k .

1.4 Simulation Study
1.4.1 Gibbs Sampler
In this section we check whether the Gibbs sampler is able to sample from πx,z(·).
To illustrate a typical sample path, Figure 1 in the supplementary material shows the
trace plot of a simulated chain of length 2000 with k = 5 conditioning locations and
a thinning lag of 5 and compares the theoretical probabilities {πx,z(τ), τ ∈ Pk} to
the empirical ones estimated from the Markov chain. As mentioned in the previous
section it can be seen that only a few states have a significant probability to occur and
these states most often differs only slightly. As expected for this particular simulation
the empirical probabilities match the theoretical ones.
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To better assess if our uniform random scan Gibbs sampler is able to sample
from πx,z(·) we simulate 250 Markov chains of length 1000—after removing a burn-
in period and thinning the chain, and similarly to Figure ??, compare the theoretical
probabilities {πx,z(τ), τ ∈ Pk} to the empirical ones using a χ2 test for each of these
chains. Since the computation of these theoretical probabilities is CPU intensive, the
number of conditioning locations is at most 5 in our simulation study.
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FIGURE 1.4
QQ-plots for the sample χ2 test p-values against U(0, 1) quantiles with a varying
number of conditioning locations k with an insert showing the p-values of a Kol-
mogorov Smirnov test for uniformity—from left to right, k = 2, 3, 4 and 5. The
dashed lines show the 95% confidence envelopes.

Figure 1.4 plots the sample p-values of these χ2 tests against the quantiles of a
U(0, 1) distribution for a varying number of conditional locations. This figure cor-
roborates what we saw in Figure ?? since the sample p-values seem to follow a
U(0, 1) distribution indicating that the sampler is able to sample from πx,z(·).

1.4.2 Conditional simulations
In this section we check if our algorithm is able to produce realistic conditional sim-
ulations of Brown–Resnick processes with semi-variogram γ(h) = (h/λ)ν . In this
case, the spectral process Y (·) in (1.2) is a fractional Brownian motion with Hurst
index ν. To have a broad overview, we consider three different sample path properties
as summarized below.

Sample path properties
γ1: Wiggly γ2: Smooth γ3: Very smooth

λ 25 54 69
ν 0·5 1·0 1·5

The variogram parameters are set to ensure that the extremal coefficient function
satisfies θ(115) = 1.7. Figure 1.5 shows one realization for each sample path config-
uration as well as the corresponding extremal coefficient function. These realizations
will serve as the basis for our conditioning events.

In order to check if our sampling procedure is accurate, given a single conditional
event {Z(x) = z}, we generated 1000 conditional realizations of a Brown–Resnick
processes with standard Gumbel margins and semi-variograms γj (j = 1, 2, 3).
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FIGURE 1.5
Three realizations of a Brown–Resnick process with standard Gumbel margins and
semi-variograms γ1, γ2 and γ3—from left to right. The squares correspond to the 15
conditioning values that will be used in the simulation study. The right panel shows
the associated extremal coefficient functions where the solid, dashed and dotted lines
correspond respectively to γ1, γ2 and γ3.

Figure 1.6 shows the pointwise sample quantiles obtained from these 1000 sim-
ulated paths in comparison to unit Gumbel quantiles. As expected the conditional
sample paths inherit the regularity driven by the Hurst index ν/2 of the process Y (·)
in (1.2) and there is less variability in regions close to some conditioning locations.
On the opposite, although for this specific type of variogram θ(h) → 2 as h → ∞,
for regions far away from any conditioning location the sample quantiles converges
to that of a standard Gumbel distribution indicating that the conditional event does
not have any influence anymore. In addition the sample paths used to get the condi-
tional events, see Figure 1.5, lay most of the time in the 95% pointwise confidence
intervals corroborating that our sampling procedure seems to be accurate — the cov-
erage ranges between 0·93 and 1·00 with a mean value of 0·96.

So far we have checked that the proposed sampling procedure yields the ex-
pected coverage as well as the right marginal properties as we move far away from
any conditioning location. The last point to be fulfilled is to assess whether the sim-
ulation procedure honors the spatial dependence driven by the semi-variogram γ(·).
To this aim we use the F -madogram (Cooley et al., 2006) to compare the pairwise
extremal coefficient estimates to the theoretical extremal coefficient function. Since
Z(·) | {Z(x) = z} is not max-stable the F -madogram cannot be used. However, by
integrating out the conditional event we recover the original Brown-Resnick distribu-
tion and the max-stability property. So we generate independently 1000 conditional
events {Z(x) = z}, x being fixed, and for each conditional event one conditional
realization of a Brown–Resnick process. Figure 1.7 compares the pairwise extremal
coefficient estimates based on these simulations to the theoretical extremal coeffi-
cient function. As expected, whatever the number of conditioning location and the
semi-variograms are, the (binned) pairwise estimates match the theoretical curve in-
dicating that the spatial dependence is honored.
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FIGURE 1.6
Pointwise sample quantiles estimated from 1000 conditional simulations of Brown–
Resnick processes with standard Gumbel margins and semi-variograms γ1, γ2 and γ3
(left to right) and with k = 5, 10, 15 conditioning locations—top to bottom. The solid
black lines show the pointwise 0·025, 0·5, 0·975 sample quantiles and the dashed
grey lines that of a standard Gumbel distribution. The squares show the conditional
points {(xi, zi)}i=1,...,k. The solid grey lines correspond the simulated paths used to
get the conditioning events. The inserts give the proportion of points lying in the 95%
pointwise confidence intervals.
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FIGURE 1.7
Comparison of the extremal coefficient estimates (using a binned F -madogram with
250 bins) and the theoretical extremal coefficient function for a varying number of
conditioning locations and different semi-variograms with k = 5 (left) or k = 15
(right) conditioning points. The ’o’, ’+’ and ’x’ symbols correspond respectively to
γ1, γ2 and γ3. The solid, dashed and dotted grey lines correspond to the theoretical
extremal coefficient functions for γ1, γ2 and γ3.
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