TD 2 : Échantillonage aléatoire simple

Exercice 1.

On considère une population de 6 individus sur lesquels une variable x vaut

$$x_1 = 1, x_2 = 2, x_3 = 2, x_4 = 4, x_5 = 4, x_6 = 5$$

Dans la suite on travaille sur un échantillon aléatoire simple de 2 individus.

- a) Calculez la distribution exacte de la moyenne de x sur l'échantillon.
- b) Utilisez cette distribution exacte pour calculer l'espérance et la variance de cet estimateur.
- c) Utilisez les formules du cours, qui ne sont pas à savoir, pour calculer cette espérance et cette variance. Comparez les deux résultats.

Exercice 2.

Dans un sondage sur un groupe d'étudiants, 67 étudiants sur 91 étudiants interrogés ont répondu qu'ils possédaient un PC. Construire un intervalle de confiance au niveau 95% pour la proportion d'étudiants possédants un PC.

Exercice 3.

En gardant les notations du cours, dîtes quels sont les éléments aléatoires ou non et expliquez pourquoi.

$$x_1, x_{I(1)}, \overline{X}, N, \mu, I(1), n$$

Exercice 4.

Une approche astucieuse pour calculer la covariance entre $x_{I(1)}$ et $x_{I(2)}$ est basée sur le constat suivant. Si nous tirons aléatoirement toutes les unités de la population, alors la moyenne empirique vaut toujours la moyenne de la population, i.e., $\overline{X} = \mu$. Si tel est le cas alors $\text{Var}[\overline{X}] = 0$. En utilisant ce fait et que

$$\operatorname{Var}[\overline{X}] = \frac{\sigma^2}{n} + \frac{n-1}{n} \operatorname{Cov}(x_{I(1)}, x_{I(2)}),$$

en déduire la covariance entre $x_{I(1)}$ et I(2). Puis montrez que

$$\operatorname{Var}[\overline{X}] = \frac{\sigma^2}{n} \frac{N - n}{N - 1}.$$

Exercice 5.

On considère un échantillon issue d'un échantillonnage aléatoire simple sur une population de taille N=100. Supposons que $x_i=0$ ou 1 pour tout i et que la proportion de 1 dans la population est π .

Calculez $\mathbb{E}[x_{I(1)}x_{I(2)}]$ et en déduire la covariance entre $x_{I(1)}$ et $x_{I(2)}$ pour ce cas particulier.

