
Statistical Modelling of Spatial Extremes

A. C. Davison, S. A. Padoan and M. Ribatet∗

September 5, 2011

Summary

The areal modelling of the extremes of a natural process such as rainfall or tempera-

ture is important in environmental statistics; for example, understanding extreme areal

rainfall is crucial in flood protection. This article reviews recent progress in the statis-

tical modelling of spatial extremes, starting with sketches of the necessary elements of

extreme value statistics and geostatistics. The main types of statistical models thus far

proposed, based on latent variables, on copulas and on spatial max-stable processes, are

described and then are compared by application to a dataset on rainfall in Switzerland.

Whereas latent variable modelling allows a better fit to marginal distributions, it fits

the joint distributions of extremes poorly, so appropriately-chosen copula or max-stable

models seem essential for successful spatial modelling of extemes.
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1 Introduction

Natural hazards such as heatwaves, high rainfall and snowfall, tides and windstorms,

arise due to physical processes and are spatial in extent. Although it is difficult to

attribute a particular event, such as Hurricane Katrina or the 2010 flooding in Pak-

istan, to the effects of climate change, both observational data and computer climate

models suggest that the occurrence and sizes of such catastrophes will increase in the

future. The potential consequences include increases in severe windstorms, flooding,

wildfires, crop failure, population displacements and increased mortality. Apart from

their direct impacts, such events will also have indirect effects such as increased costs for

strengthening infrastructure and higher insurance premiums. There is thus a pressing

need for a better understanding of spatial extremes and more detailed assessment of

their consequences, and over the last few years the topic has become an active interface

between climate, social and statistical scientists, in interaction with stakeholders such

as insurance companies and public health officials. A particular issue when dealing with

extremes is that although vast amounts of data may be available—though of varying

quality and homogeneity—rare events are necessarily unusual and so the quantity of

directly relevant data is limited. This difficulty is compounded in the spatial setting,

because forecasting then entails extrapolation into a high-dimensional space, with all

its attendant uncertainties. It is thus important that the statistical models used should

both be flexible and have strong mathematical foundations, so that such extrapolation

has an adequate basis. These requirements suggest the use of statistics of extremes, as

sketched below.

A variety of statistical tools have been used for the spatial modelling of extremes,

including Bayesian hierarchical models, copulas and max-stable random fields. The pur-

pose of this paper is to review and to compare these approaches in the practical context

of modelling rainfall, with the twin goals of elucidating their properties and of contrast-

ing them in a concrete context. To do this we use summer maximum daily rainfall for the

years 1962–2008 at 51 weather stations in the Plateau region of Switzerland, provided

by the national meteorological service, MeteoSuisse. The stations lie north of the Alps

and east of the Jura mountains, the largest and smallest distances between them being

around 85km and just over 3km respectively. We randomly chose 35 stations to fit our

models, and use the remaining 16 to validate them, as described below. The maximum

and minimum distances between fitting and validation stations are very similar to those

for all 51 stations. Their locations are shown in Figure 1; the region is relatively flat, the

altitudes of the stations varying from 322 to 910 metres above mean sea level. Figure 2

shows the annual maxima and the maxima for the summer months, June–August, and

for the winter months, December–February, for four pairs of stations marked in blue
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Figure 1: Map of Switzerland showing the stations of the 51 rainfall gauges used for

the analysis, with an insert showing the altitude. The 36 stations marked by circles were

used to fit the models, and those marked with squares were used to validate the models.

Data for the pairs of stations with blue symbols appear in Figure 2.

in Figure 1. As one would expect, there is a clear correlation amongst the maxima at

these relatively short distances, and this must be reflected in the models if risk is to be

accurately assessed.

In Section 2 we provide an overview of the parts of statistics of extremes that are

needed later, and Section 3 provides a similar sketch of geostatistics. Subsequent sections

describe latent variable, copula and max-stable approaches to the spatial modelling of

extremes, which are then compared in §7. The paper ends with a brief discussion.

2 Statistics of extremes

2.1 General

Statistics of extremes has grown into a vast field with many domains of application.

Systematic mathematical accounts are given by Resnick (1987, 2006) and de Haan and

Ferreira (2006), while more statistical treatments may be found in Beirlant et al. (2004),

Coles (2001) and Embrechts et al. (1997), the last focusing particularly on finance. Fur-

3



1970 1990 2010

5
0

1
0
0

1
5
0

Effretikon−Uster
A
n
n
u
a
l 
m
a
x
im
u
m
 r
a
in
fa
ll 
(m
m
)

1970 1990 2010

5
0

1
0
0

1
5
0

Frauenfeld−Kalchrain

1970 1990 2010

5
0

1
0
0

1
5
0

Gruningen−Hinwil

1970 1990 2010

5
0

1
0
0

1
5
0

Hallau−Schleitheim

1970 1990 2010

5
0

1
0
0

1
5
0

S
u
m
m
e
r 
m
a
x
im
u
m
 r
a
in
fa
ll 
(m
m
)

1970 1990 2010

5
0

1
0
0

1
5
0

1970 1990 2010

5
0

1
0
0

1
5
0

1970 1990 2010

5
0

1
0
0

1
5
0

1970 1990 2010

5
0

1
0
0

1
5
0

Time

W
in
te
r 
m
a
x
im
u
m
 r
a
in
fa
ll 
(m
m
)

1970 1990 2010

5
0

1
0
0

1
5
0

Time
1970 1990 2010

5
0

1
0
0

1
5
0

Time
1970 1990 2010

5
0

1
0
0

1
5
0

Time

Figure 2: Annual, summer and winter maximum daily rainfall values for 1962–2008 at

the four pairs of stations shown in blue in Figure 1. In each case the black line represents

the station to the east and the red dashed line that to the west.

ther reviews are provided by Kotz and Nadarajah (2000) and Finkenstädt and Rootzén

(2004). A key issue in applications is that inferences may be required well beyond the

observed tail of the data, and so an assumption of stability is required: mathematical

regularities in the unobservable tail of the distribution are assumed to reach far enough

back into the observable region that extrapolation may be based on a model fitted to the

observed events. This requires an act of faith that the mathematics of regular variation,

which underpins the extrapolation, is applicable in the practical circumstances in which

the theory is applied. A statistical consequence of the lack of data is that tail infer-

ences tend to be highly uncertain, and that the uncertainty can increase sharply as one

moves further into the tail. In applications this can lead to alarmingly wide confidence

intervals, but this seems to be intrinsic to the problem.
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2.2 Univariate models

Statistical modelling of extremes may be based on limiting families of distributions for

maxima that satisfy the property of max-stability. At its simplest we take independent

continuous scalar random variables X1, . . . , Xm
iid∼ F , where the distribution F has upper

terminal xF = sup{x : F (x) < 1}, and ask whether there exist sequences of constants

{am} > 0 and {bm} such that the rescaled variables

a−1
m {max(X1, . . . , Xm)− bm}, (1)

have a non-degenerate limiting distribution G as m → ∞. It turns out that if such an

G exists, then it must be max-stable, i.e., it must satisfy the equation

Gm(b′m + a′my) = G(y), y ∈ R, m ∈ N, (2)

for sequences {am} > 0 and {b′m}. The only non-degenerate distribution with this

property is the generalized extreme-value (GEV) distribution

H(y) =







exp
[

−{1 + ξ(y − η)/τ}−1/ξ
+

]

, ξ 6= 0,

exp [− exp {−(y − η)/τ}] , ξ = 0,
(3)

where u+ denotes max(u, 0). The quantities η and τ in (3) are respectively a real location

parameter and a positive scale parameter; ξ determines the weight of the upper tail of

the density, with ξ < 0 corresponding to the reverse Weibull case in which the support

of the density has a finite upper bound, ξ = 0 corresponding to the light-tailed Gumbel

distribution, and ξ > 0 corresponding to the heavy-tailed Fréchet distribution. The rth

moment of H exists only if rξ < 1.

Expression (3) is the broadest class of non-degenerate limit laws for a maximum Y of

a random sample of continuous scalar random variables, but in multivariate and spatial

settings it is simpler to employ mathematically equivalent expressions that result from

considering the transformed random variable Z = {1 + ξ(Y − η)/τ}1/ξ, which has a

unit Fréchet distribution exp(−1/z), for z > 0. In this case the max-stability property

may be written as mZ
D
= max(Z1, . . . , Zm), where Z,Z1, . . . , Zm represent mutually in-

dependent unit Fréchet random variables and
D
= denotes equality in distribution. This

transformation has the effect of separating the marginal GEV distributions of the vari-

ables from their joint dependence structure, and this is often convenient.

A typical goal in applications is the estimation of a high quantile of the distribution

of Y , i.e., a solution of the equation H(yp) = p; for ξ 6= 0 this is

yp = η +
τ

ξ
{(− log p)−ξ − 1}, 0 < p < 1,
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with the limit ξ → 0 yielding yp = η − τ log(− log p). If the available observations

Yj are annual maxima and we set p = 1 − 1/T , then yp is called the T -year return

level, interpreted as the level exceeded once on average every T years. Engineering

requirements may be expressed in terms of T or yp. For example, the Dutch Delta

Commission, responsible for protection against sea- and river-water flooding, set a risk

level for sea flooding of North and South Holland that corresponds to a 10,000-year return

level, and a risk level for river flooding that corresponds to a 1,250-year return level,

though their physical interpretations in a non-stationary world are unclear. Estimates

of yp are highly sensitive to ξ, and if possible it is helpful to pool information about this

parameter.

Under mild conditions on the dependence structure of stationary time series, the

GEV also emerges as the only possible non-degenerate limiting distribution for linearly

renormalised maxima of blocks of observations, and this greatly widens its range of

application; see Leadbetter et al. (1983). In typical applications rare events occur in

clusters whose mean size θ−1 is determined by the so-called extremal index, θ ∈ (0, 1].

Block maxima then have the GEV distribution H(y)θ, but the intra-cluster distribution

may take essentially any form.

The discussion leading to (3) implies that for large m, F (bm + amy)
m ≈ H(y), and

therefore (2) implies that for large enough x,

F (x) ≈ H1/m{(x− bm)/am} ≈ H(x),

for some choice of the parameters η, τ and ξ. Thus although the generalized extreme-

value distribution (3) arises as the natural probability law for maxima of m independent

variables, it may also be regarded as giving an approximation for the upper tail of the

distribution of an individual variable, provided a limiting distribution for maxima exists.

For a high value u < xF and x satisfying u < x+ u < xF , we therefore have

pr(X > x+ u | X > u) ≈ 1−H(x+ u)

1−H(u)
≈ (1 + ξx/σu)

−1/ξ
+ , x > 0, (4)

where σu = τ + ξ(u − η). The right-most expression in (4) is the survivor function

of the generalized Pareto distribution (GPD), which is commonly used for modelling

exceedances over high thresholds (Davison and Smith, 1990). The standard approach

to such modelling presupposes that the times of exceedances over the high threshold u

are the realisation of a stationary Poisson process of rate λ, say, and that their sizes are

independent with survivor function (4). This model may also be formulated in terms of

a limiting Poisson process of extremes (Smith, 1989).
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2.3 Multivariate models

We now consider componentwise maxima of an independent sequence of bivariate ran-

dom variables (X1i, X2i), for i = 1, . . .. If non-degenerate limiting marginal distribu-

tions exist, these must be of the form (3), and hence the rescaled limiting versions of

the componentwise maxima max(X11, . . . , X1n) and max(X21, . . . , X2n) may be trans-

formed to have marginal unit Fréchet distributions. It turns out that if it exists and is

non-degenerate, then the limiting joint distribution of the transformed componentwise

maxima can be written as

pr(Z1 ≤ z1, Z2 ≤ z2) = exp{−V (z1, z2)}, z1, z2 > 0, (5)

where the exponent measure V (z1, z2) (Resnick, 1987, p. 268) satisfies

V (z1,∞) = 1/z1, V (∞, z2) = 1/z2, V (tz1, tz2) = t−1V (z1, z2), t > 0. (6)

Here the first two properties ensure that the marginal distributions are unit Fréchet,

and the third shows that the function V is homogeneous of order −1, thereby extending

the max-stability property to the bivariate case. This argument extends to multivariate

extremes, for which the corresponding function V (z1, . . . , zD) satisfies the analogues of

(6). Two bounding cases are where Z1, . . . , ZD are independent or are entirely dependent,

corresponding respectively to

V (z1, . . . , zD) = 1/z1 + · · ·+ 1/zd, V (z1, . . . , zD) = 1/min(z1, . . . , zD).

A consequence of the homogeneity of V is that multivariate extreme-value distribu-

tions have various so-called spectral representations, of which the best-known, due to

Pickands (1981), rewrites the exponent measure as

V (z1, . . . , zD) =

∫

SD

max(w1/z1, . . . , wD/zD) dM(w1, . . . , wD), (7)

whereM is a measure on the D-dimensional simplex SD. On setting all but one of the zd

equal to +∞, we see that in order for the distribution to have unit Fréchet margins, M

must satisfy the constraint
∫

wd dM(w1, . . . , wD) = 1 for each d. Unlike for univariate

extremes, there is no simple parametric form for the multivariate limiting distribution;

V can take any form subject to (6). From a statistical viewpoint this is a mixed blessing.

Although numerous parametric forms for V or equivalent functions have been proposed

(Kotz and Nadarajah, 2000, §3.5), those in current use tend to be somewhat inflexible,

and owing to the curse of dimensionality, nonparametric estimation has essentially been

confined to the bivariate case (Fougères, 2004; Boldi and Davison, 2007; Einmahl and
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Segers, 2009). More positively, we may use the flexibility to construct functions V

adapted to specific applications.

A difficulty for statistical inference arises because equations such as (5) specify cu-

mulative distribution functions. The likelihood function for D-dimensional data involves

differentiation of exp{−V (z1, . . . , zD)} with respect to z1, . . . , zD, resulting in a combi-

natorial explosion; the number of terms is the number of partitions of the integer D.

Even for only ten dimensions, D = 10, a single likelihood evaluation would involve a

sum of over 100,000 different terms, which seems infeasible in general, though there may

be simplifications in special cases.

2.4 Extremal coefficient

It is useful to have summary measures of extremal dependence. One possibility is based

on the probability that all the transformed variables are less than z,

pr(Z1 ≤ z, . . . , ZD ≤ z) = exp{−V (1, . . . , 1)/z} = exp(−θD/z), z > 0, (8)

owing to the homogeneity of V . The quantity θD, known as the extremal coefficient of

the observations Zd, d ∈ D = {1, . . . , D}, varies from θD = 1 when the observations are

fully dependent to θD = D when they are independent, and thus provides a summary

of the degree of dependence, though it does not determine the joint distribution. In the

bivariate case it is easy to check that

lim
z→∞

pr(Z2 > z | Z1 > z) = 2− θD,

thereby providing an interpretation of θD in terms of the limiting probability of an

extreme event in one variable, given a correspondingly rare event in the other. Thus if

θD = 2, this probability is zero, while smaller values of θD will yield larger conditional

probabilities.

Schlather and Tawn (2003) discuss the consistency properties that must be satisfied

by the extremal coefficients of subsets of Z1, . . . , ZD, and suggest how these coefficients

may be estimated. Below we compare purely empirical estimators for pairs of sites

with the fitted versions found from models, so we need to estimate θD for D = 2. In

our experience madogram estimators perform well, and we use these below. The F -

madogram is defined as (Poncet et al., 2006)

νF (x) =
1

2
E {|F (Z1)− F (Z2)|} (9)

where F (z) = exp(−1/z). Unlike the more common variogram (Schabenberger and

Gotway, 2005, Ch. 4), (9) remains finite when the margins of the process are heavy
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tailed, because E{F k(Z1)} = 1/(1 + k), for k > 0, and it has a bijective relationship

with the extremal coefficient θ = (1 + 2νF )/(1− 2νF ). Poncet et al. (2006) discuss

estimation of the extremal coefficient based on the madogram, which is extended by

Naveau et al. (2009) to the setting in which maxima of a stationary process are observed

at many points in space and it is required to estimate the extremal coefficient as a

function of the distance between them.

3 Geostatistics

3.1 Generalities

Geostatistics is a large and rapidly developing domain of statistics, with important ap-

plications in areas such as public health, agriculture and resource exploration, and in

environmental and ecological studies. Standard texts are Cressie (1993), Stein (1999),

Wackernagel (2003), Banerjee et al. (2004), Schabenberger and Gotway (2005) and Dig-

gle and Ribeiro (2007). There are three common data types: spatial point processes,

used to model data whose observation sites may be treated as random; areal data, avail-

able at a set of sites for which interpolation may be uninterpretable, such as climate

model output; and point-referenced or geostatistical data, which may be modelled as

values from a spatial process defined on the continuum but observed only at fixed sites,

between which interpolation makes sense.

Here we are concerned with point-referenced data, for which a suitable mathematical

model is a random process {Y (x)} defined at all points x of a spatial domain X , typically

taken to be a contiguous subset of R2. Examples are levels of air pollution or annual

maximum temperatures observed at a finite subset D = {x1, . . . , xD} of sites of X . The

statistical problem is to make inference for the process elsewhere in X . Having observed

daily rainfall depths Y (x1), . . . , Y (xD) at a set of weather stations, for example, we may

wish to predict Y (x) at an unobserved site x, estimate the highest depth maxx∈X Y (x)

in the region, or provide a distribution for a quantity such as
∫

x∈X
Y (x) dx. Below we

sketch elements of geostatistics needed subsequently, leaving the interested reader to

consult the references above for further details.

3.2 Gaussian processes

The simplest and best-explored approach to modelling point-referenced data is to sup-

pose that {Y (x)} follows a Gaussian process defined on X . Such a process is called

intrinsically stationary if, in addition to its finite-dimensional distributions being Gaus-

sian, its increments are stationary, i.e., the process {Y (x + h) − Y (x) : x ∈ X} is

9



stationary for all lag vectors h. Then we take E{Y (x+ h)−Y (x)} = 0, and there exists

a function

γ(h) = 1
2
var{Y (x+ h)− Y (x)}, x, x+ h ∈ X ,

called the semivariogram; this need not be bounded. A stronger assumption is that of

second-order stationarity, meaning that var{Y (x)} is a finite constant for x ∈ X and that

the covariance function cov{Y (x1), Y (x2)} exists and may be expressed as C(x1 − x2),

where C(·) is a positive definite function. In this case we may write γ(h) = C(0)−C(h),
and we see that γ(h) is bounded above by C(0) = var{Y (x)} and that ρ(h) = C(h)/C(0)

is a correlation function. For Gaussian processes second-order stationarity is equivalent

to stationarity, under which the joint distribution of any finite subset of points of Y (x)

depends only on the distances between their sites.

Gneiting et al. (2001) discuss the relationships between semivariograms and covari-

ance functions: in particular, a real function on R
2 satisfying γ(0) = 0 is the semivar-

iogram of an intrinsically stationary process if and only if it is conditionally negative

definite, i.e.,
n
∑

i,j=1

aiajγ(xi − xj) ≤ 0 (10)

for all finite sets of sites x1, . . . , xn in X and for all sets of real numbers a1, . . . , an

summing to zero, or equivalently if exp{−tγ(h)} is a covariance function for all t >

0. Clearly a semivariogram or covariance function valid in R
p is also valid in lower-

dimensional spaces, though the converse is false.

A covariance function or equivalently a semivariogram is called isotropic if it depends

only on the length ‖x1−x2‖ of x1−x2 and not on its orientation; this typically unrealistic

but very convenient modelling assumption imposes additional restrictions on γ(h).

Schabenberger and Gotway (2005, §4.3) and Banerjee et al. (2004, §2.1) describe

a variety of valid correlation functions. Isotropic forms for those used in this paper

are summarised in Table 1, where λ represents a positive scale parameter with the

dimensions of distance, and κ is a shape parameter that controls the properties of the

random process and in particular can determine the roughness of its realisations. The

Whittle–Matérn family is flexible and widely used in practice, though it is often difficult

to estimate its shape parameter. A simple way to add anisotropy to such functions is to

replace ‖h‖ by (hTAh)1/2, where A is a positive definite matrix with unit determinant;

this is known as geometric anisotropy.

If {ε(x)} and {ε′(x)} are two independent stationary Gaussian processes with unit

variance and correlation functions ρ(h) and ρ′(h), then their sum is also a Gaussian

process, with correlation function ρ(x) + ρ′(x). A white noise process {ε′(x)} has cor-

relation function ρ(h) = δ(h), where δ(h) denotes the Kronecker delta function, and

10



Family Correlation function Range of validity

Whittle–Matérn ρ(h) = {2κ−1Γ(κ)}−1(‖h‖/λ)κKκ(‖h‖/λ) κ > 0

Cauchy ρ(h) = {1 + (‖h‖/λ)2}−κ
κ > 0

Stable ρ(h) = exp{−(‖h‖/λ)κ} 0 < κ ≤ 2

Exponential ρ(h) = exp(−‖h‖/λ) ——

Table 1: Parametric families of isotropic correlation functions. Here Kκ denotes the

modified Bessel function of order κ, Γ(u) denotes the gamma function and Jκ denotes

the Bessel function of order κ. In each case λ > 0.

thus the process {σ(1−α)1/2ε(h)+σα1/2ε′(h)} has variance σ2 and correlation function

(1 − α)ρ(h) for h 6= 0; there is a so-called nugget effect at the origin, corresponding to

the extremely local variation added by the white noise. In this case a proportion α of

the variance arises from this nugget effect.

4 Latent variable models

4.1 General

Dependence in many statistical settings is introduced by integration over latent variables

or processes. Here this idea can be used to introduce spatial variation in the parame-

ters. For example, we may suppose that the response variables {Y (x)} are independent

conditionally on an unobserved latent process {S(x) : x ∈ X}, let the parameters of

the response distributions depend on {S(x)}, suppose that {S(x)} follows a Gaussian

process, and then induce dependence in {Y (x)} by integration over the latent process.

This approach is common in geostatistics with non-normal response variables (Diggle

et al., 1998; Diggle and Ribeiro, 2007), and because of the complexity of the integrations

involved is most naturally performed in a Bayesian setting, using Markov chain Monte

Carlo algorithms (Robert and Casella, 2005; Gilks et al., 1996) to perform inferences.

An excellent account of this approach to spatial modelling is provided by Banerjee et al.

(2004).

The first application of latent variables to statistical extremes was the study of hur-

ricane wind speeds by Coles and Casson (1998) and Casson and Coles (1999). They

treated position on the Eastern seaboard of the US as a scalar spatial variable and used

a hierarchical Bayes model with a stable correlation function to fit the point process

likelihood to their data. In their application the main gains relative to treating the

data at different sites as independent were the possibility of interpolation of the distri-
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bution of extreme wind speeds between sites at which they had been observed, and an

increase in the precision of estimation due to borrowing of strength. A related approach,

but without spatial structure, was used by Fawcett and Walshaw (2006) to model wind

speeds in central and northern England.

Cooley et al. (2007) used the generalized Pareto model (4) with a common threshold

u at all sites to map return levels for extreme rainfall in Colorado. The rate parameter

λ and the scale parameter σu depended on location x in a climate space comprised of

elevation above sea-level and mean precipitation, instead of longitude and latitude. A

stationary isotropic exponential covariance function was used to induce spatial depen-

dence in the latent processes {S(x)} for these parameters. The shape parameter ξ had

two values, depending on the site location. Turkman et al. (2010) construct a similar but

more complex model for space-time properties of wildfires in Portugal, using a random

walk to describe the temporal properties, and smoothing for the spatial dependence;

their paper also makes suggestions on spatial max-stable modelling with exceedances.

Gaetan and Grigoletto (2007) analyse annual rainfall maxima at sites in north-eastern

Italy, using non-stationary spatial dependence and random temporal trend in the pa-

rameters of the generalized extreme-value distribution. Sang and Gelfand (2009a) mod-

eled gridded annual rainfall maxima in the Cape Floristic Region of South Africa using

the generalized extreme-value distribution with a spatio-temporal hierarchical structure,

and in Sang and Gelfand (2009b) used a Gaussian spatial copula model, transformed to

the generalised extreme-value scale, to induce dependence between extremes of point-

referenced rainfall data. Other applications of such models to areal data are Cooley and

Sain (2010), who assessed possible changes in rainfall extremes by comparing current and

future rainfall computed from a regional climate model, using an intrinsic autoregression

to model how the three parameters of the point process formulation for extremes vary

on a large grid. Owing to difficulties in estimating the shape parameter, these authors

used a penalty due to Martins and Stedinger (2000) to ensure that |ξ| < 1/2.

In the next section we describe a rather simpler latent model for the annual maximum

rainfall data used in this paper.

4.2 A simple model

Suppose that the GEV parameters {η(x), τ(x), ξ(x)} vary smoothly for x ∈ X accord-

ing to a stochastic process {S(x)}. For our application, and by analogy with Casson

and Coles (1999), we assume that the Gaussian processes for each GEV parameter are

mutually independent, though this assumption can be relaxed (Cooley and Sain, 2010;
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Sang and Gelfand, 2009a). For instance, we take

η(x) = fη(x; βη) + Sη(x;αη, λη), (11)

where fη is a deterministic function depending on regression parameters βη, and Sη is a

zero mean, stationary Gaussian process with covariance function αη exp(−‖h‖/λη) and
unknown sill and range parameters αη and λη. We use similar formulations for τ(x)

and ξ(x). Then conditional on the values of the three Gaussian processes at the sites

(x1, . . . , xk), the maxima are assumed to be independent with

Yi(xj) | {η(xj), τ(xj), ξ(xj)} ∼ GEV{η(xj), τ(xj), ξ(xj)}, i = 1, . . . , n, j = 1, . . . , k.

(12)

A joint prior density π must be defined for the parameters αη, ατ , αξ, λη, λτ , λξ, βη,

βτ and βξ. In order to reduce the computational burden we use conjugate priors whenever

possible, taking independent inverse Gamma and multivariate normal distributions for

ατ , and βτ , respectively. No conjugate prior exists for λτ , for which we take a relatively

uninformative Gamma distribution. The prior distributions for the two remaining GEV

parameters are defined similarly. The full conditional distributions needed for Markov

chain Monte Carlo computation of the posterior distributions are

π(η | · · · ) ∝ π(η | αη, λη,βη)π(y | η, τ , ξ),
π(αη | · · · ) ∝ π(αη | κ∗αη

, θ∗αη
)π(η | αη, λη,βη),

π(λη | · · · ) ∝ π(λη | κ∗λη
, θ∗λη

)π(η | αη, λη,βη),

π(βη | · · · ) ∝ π(βη | µ∗
η,Σ

∗
η)π(η | αη, λη,βη),

where κ∗· , θ
∗
· , µ

∗
· and Σ∗

· are the hyperparameters of the prior distributions. The full

conditional distributions related to τ and ξ have similar expressions. The corresponding

Markov chain Monte Carlo algorithm is outlined in the Appendix.

5 Copula models

5.1 Generalities

In view of the flexibility of modelling afforded by Gaussian-based geostatistical models,

and in particular the range of potential covariance functions, it is natural to investigate

how they may be extended to model spatial extremes. An obvious approach is to use the

probability integral transformation to place the annual maxima on the Gaussian scale,

on which their joint distribution can be modelled using standard geostatistical tools.

However the requirement that the model for the original data should be max-stable
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imposes tight restrictions on the possible covariance structures, even on the Gaussian

scale. Although these restrictions are theoretical in nature, we shall see below that they

strongly affect the fit of the models. There is a close relationship between this approach

and the use of copulas, and we first give a brief outline of the latter.

5.2 Copulas

Sklar’s Theorem (Nelsen, 2006, pp. 17–24) establishes that the D-dimensional joint

distribution F of any random vector X1, . . . , XD may be written as

F (x1, . . . , xD) = C{F1(x1), . . . , Fd(xD)}, (13)

where F1, . . . , FD are the univariate marginal distributions of X1, . . . , XD and C is a cop-

ula, i.e., a D-dimensional distribution on [0, 1]D. The function C is uniquely determined

for distributions F with absolutely continuous margins. If the marginal distributions

Fd are continuous and strictly increasing, then C corresponds to the distribution of

F1(X1), . . . , FD(XD), that is

C(u1, . . . , ud) = F{F−1
1 (u1), . . . , F

−1
D (uD)}.

Nelsen (2006) and Joe (1997) are clear introductions to multivariate models and copulas.

One might argue, with Mikosch (2006), that the transformation to uniform margins is

mathematically trivial, obscures important features of the data that are visible on their

original scale and makes stochastic modelling awkward, and hence is rarely interesting

for applications. An alternative view is that the implicit separation of the marginal

distributions of the variables from their dependence structure provides a unifying frame-

work to modelling multivariate data. The discussion following Mikosch’s paper may be

consulted for a lively debate of the merits and demerits of copulas; here we merely wish

to show how they may be used to model spatial extremes.

As a simple and important example, suppose that X1, . . . , XD have a joint Gaussian

distribution with means zero and covariance matrix Ω whose diagonal elements all equal

unity. The Gaussian copula function is

C(u1, . . . , ud) = Φ{Φ−1(u1), . . . ,Φ
−1(ud); Ω}, (14)

where Φ(·; Ω) is the joint distribution function of X1, . . . , XD and Φ denotes the cumu-

lative distribution function of a standard normal random variable. Here we have used

the componentwise transformation Ui = Φ(Xi). The corresponding density is readily

obtained. Similarly the copula of the multivariate Student t distribution with ν degrees

of freedom and dispersion matrix Ω may be written

C(u1, . . . , uD) = Tν{T−1
ν (u1), . . . , T

−1
ν (uD); Ω}, (15)
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where Tν(·; Ω) and Tν are the corresponding joint and marginal distribution functions.

5.3 Extremal copulas

If the random variables Y1, . . . , YD possess a joint multivariate extreme value distribution,

then their marginal distributions are of the form (3). As these margins are continuous,

equation (13) implies that the joint distribution must correspond to a unique copula,

and the max-stability property implies that this copula must satisfy

C(um1 , . . . , u
m
D) = Cm(u1, . . . , uD), 0 < u1, . . . , uD < 1, m ∈ N.

Such a copula, called an extremal copula or stable dependent function (Galambos, 1987;

Joe, 1997), is closely related to the exponent measure of §2.3, through the relation

C(u1, . . . , uD) = exp{−V (−1/ log u1, . . . ,−1/ log uD)}. The spectral representation (7)

means that we may write

C(u1, . . . , uD) = exp

{

A

(

log u1
∑

log ud
, . . . ,

log uD
∑

log ud

) D
∑

d=1

log ud

}

, (16)

where the function A, called the the Pickands dependence function, depends on the

measure M on the simplex SD; A is often written as a function of just D − 1 of its

arguments, which sum to unity. Since the transformation from Fréchet to uniform

margins is continuous, convergence of rescaled maxima to a non-degenerate joint limiting

distribution on the uniform scale follows from the convergence on the Fréchet scale. A

useful example is the extremal t copula (Demarta and McNeil, 2005), which results from

rescaling the maxima of independent multivariate Student t variables with dispersion

matrix Ω and ν degrees of freedom. For D = 2 this yields

A(w) = wTν+1

[

{w/(1 − w)}1/ν − ρ

{(1− ρ2)/(ν + 1)}1/2

]

+(1−w)Tν+1

[

{(1 − w)/w}1/ν − ρ

{(1− ρ2)/(ν + 1)}1/2

]

, 0 < w < 1,−1 < ρ < 1,

(17)

where ρ is the correlation obtained from Ω. The limit of (17) when the correlation may

be expressed as ρ = exp{−a2/(2ν)} ∼ 1 − a2/(2ν) for some a > 0 and ν → ∞ is the

Hüsler and Reiss (1989) copula given by

A(w) = (1−w)Φ
{

a

2
+ a−1 log

(

1− w

w

)}

+wΦ

{

a

2
+ a−1 log

(

w

1− w

)}

, 0 < w < 1;

(18)

see also Nikoloulopoulos et al. (2009). This implies that the extremal t copula is more

flexible than the Hüsler–Reiss copula, in two distinct ways: first, the presence of the

degrees of freedom introduces a further parameter; second, two different correlation

functions that yield the same form for a when ν → ∞, such as the Gaussian function
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ρ(h) = exp{−(h/λ)2/(2ν)} and the Cauchy function ρ(h) = {1 + (h/λ)2/(2ν)}−κ, will

both yield the same form for (18) but not for (17). In the limit as ν → ∞ the parameter κ

must be absorbed by reparametrization, as we shall see in §7.3. Owing to the relationship

between correlation functions and variograms mentioned after (10), we see that a2 will

correspond to a semivariogram.

For any fixed correlation |ρ| < 1, it follows from (17) that the limit as ν → ∞
is A(w) = 1, which corresponds to C(u1, u2) = u1u2, so componentwise maxima of

correlated normal variables are independent in the limit, except in the trivial case |ρ| = 1.

A similar limit with a different rescaling was used by Hüsler and Reiss (1989) when taking

maxima of m independent bivariate Gaussian variables with correlation ρ; in this case

letting ρ→ 1 such that limm→∞ 4(1− ρ) logm = a2 also yields (18).

The limit of (17) when ν → 0 is the Marshall–Olkin copula

C(u1, u2) = exp {α log(u1u2) + (1− α) logmin(u1, u2)} , 0 ≤ α ≤ 1, (19)

where α = T1{−ρ/(1−ρ2)1/2}. The boundary cases in (19) are α = 0, which corresponds

to perfectly dependent extremes and arises for ρ = 1, and α = 1, which corresponds to

independent extremes and arises for ρ = −1.

5.4 Tail dependence

Pairwise tail dependence in copulas may be measured using the limits of the conditional

probabilities pr(U2 > u | U1 > u) and pr(U2 ≤ u | U1 ≤ u), which may be written as

χup = lim
u→1−

1− 2u− C(u, u)

1− u
, χlow = lim

u→0+

C(u, u)

u
,

provided that these limits exist. If one of these expressions is positive, then there

is dependence in the corresponding tail, and otherwise there is independence. If an

extremal copula C∗ corresponding to C exists and is non-degenerate, that is, if

C(u
1/m
1 , u

1/m
2 )m → C∗(u1, u2), 0 < u1, u2 < 1, m→ ∞,

then the values of χup for C and C∗ are equal (Joe, 1997, p. 178).

In the max-stable case there is a close relation between χup and the extremal coef-

ficient, θ, viz, χup = 2 − θ = 2 − 2A(1/2, 1/2), where A is the dependence function in

(16). In particular, the Gaussian copula has χup = χlow = 0, the Student t copula has

χup = χlow = 2Tν+1

[

−
{

(ν + 1)(1− ρ)

1 + ρ

}1/2
]

,

the symmetry arising from the elliptical form of the joint densities, and the Hüsler–Reiss

copula has χup = 2− 2Φ(a/2) and χlow = 0.
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5.5 Inference

Given data y1, . . . , yD assumed to be a realisation from a multivariate distribution whose

margins take the parametric forms H1(y; ζ), . . . , HD(y; ζ) and which has a parametric

copula C that depends upon parameters γ, the parameter vector ϑ = (ζ, γ) may be

estimated by forming a likelihood from the joint density corresponding to the joint

distribution C{H1(y1; ζ), . . . , HD(yD; ζ); γ}. In the spatial context the Hd will typically

depend on the site xd at which yd is observed, as in (12), and γ will represent the

parameters of a function that controls how the dependence of yc and yd is related to

the distance between them. For example, when fitting the Student t copula, the (c, d)

element of the dispersion matrix Ω could be of the form σ2ρ(xc − xd), where ρ is one of

the correlation functions of Section 3.2.

If the joint density of Y1, . . . , YD is available, then likelihood inference may be per-

formed in the usual way, with the observed information matrix used to provide standard

errors for estimates based on large samples, and information criteria used to compare

competing models. Alternatively, Bayesian inference can be performed; for example,

Sang and Gelfand (2009b) use Markov chain Monte Carlo to fit such a model, with the

Gaussian copula, exponential correlation function and GEV marginal distributions hav-

ing the same scale and shape parameters but a regression structure and spatial random

effects in the location parameter. Unfortunately the joint density of Y1, . . . , YD is not

available when using the Hüsler–Reiss and extremal t copulas, for which only the bivari-

ate distributions corresponding to (17) and (18) are known. In Section 6.2 we discuss

the use of composite likelihood for inference in such cases.

6 Max-stable models

6.1 Models

It is natural to ask whether there are useful spatial extensions of the extremal models

described in §2. The central arguments of Section 2.2 were extended to the process

setting by Laurens de Haan around three decades ago, and a detailed account is given

by de Haan and Ferreira (2006, Ch. 9). A key notion is that of a so-called spectral

representation of extremal processes, and for our purposes the most useful such rep-

resentation is due to Schlather (2002). Let {S−1
j }∞j=1 be the points of a homogeneous

Poisson process of unit rate on R+, so that {Sj}∞j=1 are the points of a Poisson process

on R+ with intensity ds/s2, and let {Wj(x)}∞j=1 be independent replicates of a stationary
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process W (x) on R
p satisfying E[max{0,Wj(0)}] = 1, where 0 denotes the origin. Then

Z(x) = max
j
Sj max{0,Wj(x)} (20)

is a stationary max-stable process on R
p with unit Fréchet marginal distributions. To

see this, note following Smith (1990) that we can consider the {Sj,Wj(x)}∞j=1 to be the

points in a Poisson process of intensity ds/s2×ν(dw) on R+×W, where ν is the measure

of the Wj(x) and W is a suitable space. Thus the probability that Z(x) ≤ z equals the

void probability of the set {(s, w) ∈ R+ ×W : smax(0, w) > z}, which has measure
∫ ∫ ∞

z/max{0,w}

ds

s2
ν(dw) =

∫

z−1 max{0, w} ν(dw) = z−1

because E[max{0,Wj(0)}] = 1; hence Z(x) has a unit Fréchet distribution. The max-

stability follows from the infinite divisibility of the Poisson process, which implies that

the distributions of {maxmj=1Zj(x1), . . . ,maxmj=1Zj(xD)} and m{Z(x1), . . . , Z(xD)} are

equal for any finite subset of points {x1, . . . , xD} ⊂ X .

Different choices for the process W (x) lead to some useful max-stable models. Sta-

tionarity implies that if we wish to describe the joint distributions of the max-stable

process {Z(x)} at pairs of points of X then there is no loss of generality in consider-

ing the sites 0 and h, and for the remainder of this subsection we describe the joint

distributions of Z(0) and Z(h) under some simple models.

A first possibility is to take Wj(x) = g(x − Xj), where g is a probability density

function and {Xj} is a homogeneous Poisson process, both on R
p. In this case the value

of the max-stable process at x may be interpreted as the maximum over an infinite

number of storms, centered at the random points Xj and of ferocities Sj , whose effects

at x are given by Sjg(x−Xj). The case where g is the normal density was considered

by Smith (1990) in a pioneering unpublished report and is often called the Smith model.

If g is taken to be the multivariate normal distribution with covariance matrix Ω, then

the exponent measure for Z(0) and Z(h) is

z−1
1 Φ

{

a(h)

2
+ a−1(h) log

(

z2
z1

)}

+ z−1
2 Φ

{

a(h)

2
+ a−1(h) log

(

z1
z2

)}

, (21)

where a2(h) = hTΩ−1h is the Mahalanobis distance between h and the origin, and

Φ is the standard normal distribution function. The close resemblance to (18) is no

coincidence; this corresponds to taking an exponential correlation function from Table 1

with geometric anisotropy and letting the scale parameter λ→ ∞, thereby producing the

extremal model for an intrinsically stationary underlying Gaussian process with semi-

variogram proportional to hTΩ−1h. The extremal coefficient is the θ(h) = 2Φ{a(h)/2},
which attains 2 as h → ∞ and falls to 1 as h → 0, spanning the range of possible
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extremal dependencies. The exponent measures for the Student and Laplace densities

were derived by de Haan and Pereira (2006) but are appreciably more complicated and

do not seem to have been used in applications.

A second possibility is to take the {Wj(x)} to be stationary standard Gaussian

processes with correlation function ρ(h), scaled so that E[max{0,Wj(0)}] = 1. Schlather

(2002) shows that in this case the exponent measure for Z(0) and Z(h) is

V (z1, z2) =
1

2

(

1

z1
+

1

z2

)

(

1 +

[

1− 2
{ρ(h) + 1}z1z2

(z1 + z2)2

]1/2
)

. (22)

This, the so-called Schlather model, is appealing because it allows the use of the rich

variety of correlation functions in the geostatistical literature, as sketched in §3.2, but
unfortunately the requirement that ρ(h) be a positive definite function imposes con-

straints on the extremal coefficient θ(h) = 1 + [{1 − ρ(h)}/2]1/2. When h ∈ R
2 and

the Wj(x) are stationary and isotropic, it turns out that θ(h) < 1.838, so this model

cannot account for extremes that become independent when the distance h increases

indefinitely.

A third possibility stems from noting that if Wj(x) is stationary on R
p, satisfies the

properties above (20), and is independent of the compact random set Bj with indicator

function IBj
(x) and volume |B|, and if Xj is a point from a Poisson process on R

p with

rate E(|B|)−1, then

W B
j (x) = Wj(x)IBj

(x−Xj)

is also stationary on R
p and may be used as the basis of a max-stable process. The

exponent measure (22) generalises to

V (z1, z2) =

(

1

z1
+

1

z2

)

{

1− α(h)

2

(

1−
[

1− 2
{ρ(h) + 1}z1z2

(z1 + z2)2

]1/2
)}

, (23)

where α(h) = E{|B ∩ (h+ B)|}/E(|B|) ∈ [0, 1] depends on the geometry of the random

set; if h is large enough that the mean overlap of B and h + B is empty, then the

corresponding extremes are independent. Davison and Gholamrezaee (2012) fit models

based on (22) and (23) to extreme temperature data.

A fourth possibility is to let W (x) = exp{σε(x) − σ2/2}, σ > 0, where ε(x) is a

stationary standard Gaussian process with correlation function ρ(h). In this case the

exponent measure for Z(0) and Z(h) equals (21), with a2(h) = 2σ2{1 − ρ(h)}. Hence

the extremal coefficient may be written θ(h) = 2Φ[σ{1− ρ(h)}1/2/√2]. As σ → 0 or

ρ→ 1, θ → 1, while as σ → ∞, θ → 2 for any ρ. Thus this geometric Gaussian process,

so-called, can have both independent and fully dependent max-stable processes as limits,

but has the same exponent measure as the Smith model.
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This process can be generalized by taking W (x) = exp{ε(x) − γ(x)}, where ε(x)
denotes an intrinsically Gaussian process with semivariogram γ(h) and with ε(0) =

0 almost surely, thus ensuring that σ2(h) = var{ε(h)} = 2γ(h) and giving extremal

coefficient θ(h) = 2Φ[{γ(h)/2}1/2]. As γ(h) → 0, we have θ(h) → 1, while if γ(h) is

unbounded, then θ(h) → 2 as ‖h‖ → ∞. Brown–Resnick processes (Davis and Resnick,

1984; Kabluchko et al., 2009) appear when ε is a fractional Brownian process, i.e.,

γ(h) ∝ hα, 0 < α ≤ 2, h > 0. In particular, when ε is a Brownian process, α = 2, the

process corresponds to the Smith model, which also arises as a Hüsler–Reiss model under

the limiting constraint limn→∞ 4{1 − ρ(h)} log n = a(h)2. On equating the extremal

coefficients for the Brown–Resnick and Hüsler–Reiss models, a(h)/2 = {γ(h)/2}1/2, we
can obtain equivalences between their parameters. For example, under the assumption

of a stable correlation function, we obtain λHR = 2−1/κHRh (λBR/h)
κBR/κHR, in an obvious

notation, and thus if κHR = κBR, then λHR = 2−1/κHRλBR. On comparing the estimates

in Tables 4 and 5, we see that this relation holds.

6.2 Pairwise likelihood fitting

The fitting of max-stable processes to data is key to applying them. By far the most

widely-used approaches to fitting are based on the likelihood function, either as an in-

gredient in Bayesian inference, or by maximum likelihood. Both require the joint density

of the observed responses, but as we see from §§2.3, 6.1, this appears to be generally

unavailable for max-stable process models. Only the pairwise marginal distributions

are known for most models, and even if an analytical form of the full joint distribution

exp{−V (z1, . . . , zD)} were available, it would be computationally infeasible to obtain

the density function from it unless D was small. In such circumstances it seems natural

to base inference on the marginal pairwise densities.

Suppose that the available data may be divided into independent subsets Y1, . . . ,Yn.

In the application described above, n would often represent the number of years of data,

and for a complete dataset Yi would represent the maxima at the D sites available

for each year. Provided that the parameters ϑ of the model may be identified from

the pairwise marginal densities, they may be estimated by maximising a composite log

likelihood function of the form (Lindsay, 1988; Cox and Reid, 2004; Varin, 2008)

ℓp(ϑ) =

n
∑

i=1

∑

{j<k:yj,yk∈Yi}

log f(yj, yk;ϑ).

The variance matrix of the maximum composite likelihood estimator ϑ̂ may be estimated

by an information sandwich of the form V (ϑ̂) = J−1(ϑ̂)K(ϑ̂)J−1(ϑ̂), where J(ϑ) is the
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observed information matrix, i.e., the hessian matrix of −ℓp(ϑ), and K(ϑ) is the esti-

mated variance of the score contributions, corresponding to the composite log likelihood

ℓp. Below we estimated the latter using centred sums of score contributions, in order to

reduce the bias of the estimated matrix.

It is not always straightforward to maximise a composite log likelihood, and in the

applications below we used multiple starting points in order to find the global maximum.

Model selection is effected by minimisation of the composite likelihood information

criterion CLIC = −2ℓp(ϑ̂) + 2tr{J−1(ϑ̂)K(ϑ̂)} (Varin and Vidoni, 2005), which has

properties analogous to those of AIC and TIC (Akaike, 1973; Takeuchi, 1976).

Composite likelihood is increasingly used in problems where the full likelihood is

unobtainable or too burdensome for ready computation, and there is a burgeoning lit-

erature on the topic, summarised by Varin (2008). Padoan et al. (2010), Blanchet and

Davison (2011) and Davison and Gholamrezaee (2012) discuss its application in the con-

text of extremal inference, and its use to fit spatial extremal models based on (21) and

(22) has been implemented in the R libraries SpatialExtremes and CompRandFld. See

also Smith and Stephenson (2009) and Ribatet et al. (2012), who use Bayes’ theorem

and pairwise likelihood to fit extremal models to rainfall data.

Alternative estimators of parameters for pairs of sites have been suggested by de

Haan and Pereira (2006) and de Haan and Zhou (2008), and applied by Buishand et al.

(2008).

7 Rainfall data analysis

7.1 Preliminaries

We illustrate the above discussion using the annual maximum rainfall data described in

§1. The focus in this paper is on comparison of different spatial approaches to modelling

the maxima, so we fitted the generalised extreme value distribution (3) in all cases, using

marginal parameters described by the trend surfaces

η(x) = β0,η + β1,ηlon(x) + β2,ηlat(x), (24)

τ(x) = β0,τ + β1,τ lon(x) + β2,τ lat(x), (25)

ξ(x) = β0,ξ, (26)

where lon(x) and lon(x) are the longitude and latitude of the stations at which the

data are observed. The marginal structure (24)–(26) was chosen using the CLIC and

likelihood values obtained when fitting a wide range of plausible models. Experiments

with fitting of flexible spatial surfaces, such as thin plate splines, have shown little benefit
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of doing so in this particular case, and raise problems such as the choice of knot locations

and of penalty. We therefore decided not to include such terms in the baseline model.

Other approaches to spatial smoothing might also be adopted, as in Butler et al. (2007),

who use local likelihood estimation for extreme-value models (Davison and Ramesh,

2000; Hall and Tajvidi, 2000), but they and do not seem necessary here. Smoothing

for extremes is also discussed by Pauli and Coles (2001), Chavez-Demoulin and Davison

(2005), Laurini and Pauli (2009) and Padoan and Wand (2008), and might be essential

over larger spatial domains.

A referee suggested taking τ(x) ∝ η(x), as is sometimes used in hydrological appli-

cations, but though this yields a slightly more parsimonious marginal model that fits

about equally well as judged using CLIC based on an independence log likelihood, we

decided to stick with the more general form (24)–(26).

For each correlation function used below, we let λ denote the scale parameter, and

let κ and α denote further parameters, depending on the correlation function, that

determine the smoothness of the random field.

To compare the different model fits, we show realisations of the corresponding an-

nual maximum rainfall surfaces, and compare the empirical distributions of maxima

for subsets of the 16 validation stations with those simulated from the fitted models.

The simulations for the max-stable and extremal copula models were performed us-

ing the expressions (20) for large finite numbers of points of the Poisson process, and

Cm(u
1/m
1 , . . . , u

1/m
D ) for large m; in both cases we verified that the marginal distribu-

tions were indistinguishable from their theoretical limits. The Brown–Resnick process

was simulated using ideas of Oesting et al. (2011).

For reasons of space we confine the discussion below to summer maximum rainfall,

but the same conclusions hold for winter maxima, except that the estimated extremal

coefficients are slightly higher, indicating marginally lower spatial dependence, in line

with the difference between the weather patterns leading to heavy rainfall in summer

and winter months; see the centre and lower sets of panels in Figure 2.

7.2 Latent variable model

We first describe the results from the latent variable approach. In order to compare the

results on a roughly equal footing, the model considered has the same trend surfaces

for the marginal parameters as in expressions (24)–(26), with the addition of three

independent independent zero mean Gaussian random fields Sη(x), Sτ (x), and Sξ(x),

as in (11), each with an exponential correlation function. Proper normal priors with

very large variances were assumed for the regression parameters β appearing in (24)–

(26). As suggested by Banerjee et al. (2004), informative priors should be used for the
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α λ

shape scale shape scale

η(x) 1 12 5 3

τ(x) 1 1 5 3

ξ(x) 1 0.04 5 3

Table 2: Hyperparameters on the latent process used for the rainfall application. The

prior distributions for α and λ are respectively inverse Gamma and Gamma.

β0 (mm) β1 (mm/km lon) β2 (mm/km lat) α λ (km) h+ (km)

η(x) 26 (24, 29) 0.05 (−0.02, 0.13) −0.16 (−0.23,−0.10) 5 (2, 12) 22 (9, 38) 64 (28, 114)

τ(x) 9 (8.2, 9.8) 5 (−26, 37) × 10−3 −0.04 (−0.06,−0.01) 0.58 (0.18, 1.6) 17 (6, 34) 51 (17, 101)

ξ(x) 0.16 (0.06, 0.27) —— —— 9 (4, 20)× 10−3 22 (8, 42) 67 (25, 125)

Table 3: Summary statistics for the posterior distributions of the latent process pa-

rameters. The posterior means and the associated 95% credible intervals (parentheses)

are displayed. h+ = −λ log 0.05 corresponds to the distance for which the correlation

function equals 0.05. The parameter β0,ξ is dimensionless.

parameters α and λ of the covariance functions, in order to yield non-degenerate marginal

posterior distributions for them. Suitable prior densities were chosen after exploratory

analysis of the fitted marginal distributions and are summarised in Table 2; they provide

proper prior densities with means similar to the average marginal maximum likelihood

estimates but much larger variances. A summary of the posterior is given in Table 3.

These results were obtained after 300,000 iterations of the Markov chain, thinned by a

factor 30, preceded by a burn-in of 5000 iterations.

The variation of η(x) with latitude and longitude seems reasonable, with the decrease

as latitude increases and longitude decreases corresponding to a general reduction in al-

titude away from the Alps. The pattern of variation for the scale parameter is similar.

Similar to other datasets on extreme rainfall, the shape parameter is positive, corre-

sponding to the heavy-tailed Fréchet case, but not strongly so. In accordance with

other authors (Zhang, 2004; Sang and Gelfand, 2009b), we found that it was not pos-

sible to learn from the data simultaneously about the parameters α and λ, for which

there is an identifiability problem. As a result, the posterior distributions for λ are

close to the chosen prior Gamma(5, 3). A sensitivity analysis on the choice of this prior

was performed and, although the posterior distributions for α and λ were different, the

predictive pointwise return level maps shown in Fig. 3 were similar.

Figure 3 shows maps of the predictive pointwise posterior mean for the 25-year
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Figure 3: Maps of the (predictive) pointwise 25-year return level estimates for rainfall

(mm) obtained from the latent variable and max-stable models. The top and bot-

tom rows show the lower and upper bounds of the 95% pointwise credible/confidence

intervals. The middle row shows the predictive pointwise posterior mean and point-

wise estimates. The left column corresponds to the latent variable model assuming

Gamma(5, 3) prior on λ. The middle column row assumes the less informative priors

λη ∼ Gamma(1, 100), λτ ∼ Gamma(1, 10) and λξ ∼ Gamma(1, 10). The right column

corresponds to the extremal t copula model.

return level, with pointwise 95% credible intervals. These maps were produced by first

generating one conditional simulation of three independent Gaussian processes for each

state of the Markov chain given its then-current values of η, τ and ξ, and then using this

realization to compute pointwise 25-year return levels at ungauged sites. This shows the

main strength of the latent variable approach: the use of stochastic processes to model

the spatial behavior of the marginal parameters enables us to capture complex local

variation in the return levels that deterministic trend surfaces cannot reproduce. The
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Figure 4: One realisation from each of the models. From left to right, the top row shows

results from the latent variable, Student t copula, Hüsler–Reiss copula and extremal-t

copula models; the bottom row shows results from the Smith, Schlather, geometric Gaus-

sian and Brown–Resnick models. The extreme top and bottom panels show histograms

of 1000 realisations of the summary statistic T , and the vertical lines correspond to the

realizations shown.

simulation output can be manipulated to obtain posterior standard errors and other

uncertainty measures for quantities of interest, such as these or other return levels.

Although the pointwise return level maps look reasonable, the latent variable ap-

proach does not provide plausible spatial process realizations. The upper left panel of

Figure 4 shows one realization of the spatial process from this model. Clearly the as-

sumption of conditional independence given the latent process leads to unrealistic spatial

structure, and this has a severe impact when using this model to analyse the multivari-

ate distribution of extremes for several sites, or for regional analysis. Compared to the

other models, the conditional independence assumption underlying the latent variable

model leads to much less variation in quantities such as the statistic used to choose the

simulations shown, i.e., T = |B|−1
∑

x∈B Z(x), where B denotes a ball of radius 10 km
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Figure 5: Model checking for the latent variable model. The top row compares pairwise

maxima simulated from the model and the observed maxima for pairs of stations sepa-

rated by 7 km (left), 45 km (middle) and 83 km (right). The middle row compares the

observed and predicted minima (left), mean (middle) and maxima (right) for a group

of five stations chosen randomly. The bottom row compares the observed and predicted

minima (left), mean (middle) and maxima (right) for all 16 stations kept for model

validation. Overall 95% confidence envelopes are also shown. For clarity the values are

transformed to the unit Gumbel scale using the probability integral transform for the

fitted GEV model for each station.

centered on Zurich.

Figure 5 confirms this through QQ-plots for different groupwise maxima. The multi-

variate distribution of the validation sample is very poorly modelled, because the condi-

tional independence assumption is not appropriate for extreme rainfall events involving

dependence between stations. For instance, when groups of maxima are considered, the

latent variable model seems to systematically overestimate their joint distribution, by

an amount that depends on the number of sites contributing to the maximum.
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7.3 Copula models

In this section we describe the results obtained from fitting the copula models. We

fit the non-extremal Gaussian and Student t copulas using the full likelihood, and the

extremal copulas using maximum pairwise likelihood estimation. In each case we use

the marginal structures (24)–(26) and the correlation functions in Table 1.

We first fitted the Gaussian and Student t copulas (14) and (15) with GEV marginal

distributions and various correlation functions, using the corresponding likelihoods.

These copulas are not max-stable, so we do not expect this approach to yield good

models for the joint extremes; this is essentially a frequentist approach to fitting models

like that of Sang and Gelfand (2009b). The left panel of Figure 6 shows the empirical

semivariogram for the fitting and validation stations, with the fitted semivariograms

from the best and worst-fitting models obtained using this approach. The Student t fit

seems reasonable, though not ideal, but the centre and right panels show that the cor-

responding extremal coefficients do not correspond to the data; the extremal coefficient

for the Gaussian copula equals 2 at all distances h, and that for the Student t copula

predicts very weak extremal dependence inconsistent with the observed extremes.

Turning to extremal copulas, Table 4 shows that the extremal t models all fit the

data appreciably better than do the Hüsler–Reiss models, with well-determined but small

estimates of the degrees of freedom. As in more standard geostatistical applications, it

is difficult to estimate the scale and shape parameters of the correlation functions, and

this is compounded by the presence of the degrees of freedom for the extremal t models;

the standard errors for λ and κ can be large and somewhat variable. At first sight the

differences in the estimates of λ in the upper and lower parts of the table are surprising,

but they are clarified by noting that the limit (18) obtained by letting ν → ∞ in (17)

implies that for large ν, (‖h‖/λ)κ ≈ 2ν(‖h‖/λ′)κ′

, where the parameters λ′, κ′ are those

of the extremal t model and those without the primes are those of the Hüsler–Reiss

model. We therefore expect that κ′ ≈ κ and λ′ ≈ λ(2ν)1/κ, and this is indeed the case,

apart from estimation error. Perhaps not surprisingly for rainfall data, which tend to

have high local variation corresponding to rough spatial processes, the estimates of the

shape parameters κ are less than unity.

To aid the comparison of these models, we introduce an extremal practical range.

In conventional geostatistics with stationary isotropic correlation, the practical range is

the distance h for which the correlation function ρ(h) = 0.05. In the extremal context

we instead use the distances h− and h+ satisfying θ(h−) = 1.3 and θ(h+) = 1.7. Table 4

suggests that these distances are more stable than the parameters of the correlation func-

tions themselves, though those for the exponential and Cauchy functions, which provide

the worst fits, indicate stronger dependence of extremal rainfall. Overall inclusion of the
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Figure 6: Comparison between data and fitted copula models. The left panel shows

the empirical semivariogram values for the pairs of stations used in the fitting (grey)

and the validation stations (black), with the fitted semivariograms for the best (red)

and worst (green) models. The centre and right panels show F -madogram estimates of

the pairwise extremal coefficients for the fitting and validation stations, and the fitted

extremal coefficient functions for the copula models with the lowest CLIC (red line) and

the highest CLIC (green line). The horizontal dashed lines in the centre and right panels

are at 1.3 and 1.7; these panels also show the extremal coefficient curves (black) for the

models in the left panel. The centre and right panels also show the extremal coefficients

corresponding to the best-fitting non-extremal Gaussian and Student t copula models;

that for the Gaussian model takes a constant value 2, and that for the t model lies well

above the empirical extremal coefficients.

degrees of freedom has a large impact on the model fit, while the effect of varying the

correlation function is more limited. The extremal t model with the Whittle–Matérn

correlation function provides the minimum CLIC, consistent with the best fit obtained

with max-stable models below, from the geometric Gaussian process.

The centre and right panels of Figure 6 compare the F -madogram estimates of the

extremal coefficients between pairs of stations with the extremal coefficient functions

obtained with the fitted Hüsler–Reiss and extremal t models that have the largest and

smallest CLIC values. The interpretation of such plots is somewhat awkward because

the F -madogram estimates do not correspond to independent pairs of stations, but both

fits appear to underestimate extremal dependence at distances under 30 km, and to

provide better fits, at least to the grey points, at longer distances.

The right-most three top panels in Figure 4, which show one realization from each

of the Student t and best Hüsler–Reiss and extremal t copula models, show that these

processes provide more realistic spatial dependence than does the latent process, though

the Student t realization gives a smaller area with really large precipitation, consistent
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Extremal t

Correlation DoF λ (km) κ h− (km) h+ (km) NoP ℓp CLIC

Whittle 5.5 (2.1) 316 (235) 0.39 (0.05) 6.9 87 10 −210232 423107

Stable 5.5 (2.1) 279 (206) 0.81 (0.09) 6.9 88 10 −210233 423110

Exponential 4.8 (1.5) 160 (62) 1.00 ( ∗ ) 9.0 72 9 −210264 423131

Cauchy 5.5 (2.1) 6.3 (1.2) 0.06 (0.03) 7.6 217 10 −210296 423230

Hüsler–Reiss

Semivariogram λ (km) κ h− (km) h+ (km) NoP ℓp CLIC

Stable 11.8 (3.4) 0.74 (0.07) 5.8 84 9 −210348 423232

Exponential 14.6 (3.2) 1.00 ( ∗ ) 8.7 63 8 −210438 423338

Table 4: Fits of extremal t and Hüsler–Reiss copula models to Swiss rainfall data. The

first column reports the correlation function used, and the second to fourth columns give

parameter estimates (standard errors); DoF is the estimated degrees of freedom, λ is the

scale parameter and κ is the shape parameter. (∗) denotes that the parameter is held

fixed. h− and h+ are the estimated distances at which θ(h) equals 1.3 and 1.7. NoP is

the number of parameters, ℓp is the maximised composite log-likelihood, and CLIC is

the information criterion.

with Figure 6.

Figure 7 shows the outcome of the model checking procedure for extremal t models

with the Whittle–Matérn correlation function, using the validation stations. Overall

the fit seems much better than for the latent variable model. For comparison, Figure 8

displays the results of the model checking procedure for the Student t copula model with

the Whittle–Matérn correlation function. Although the fit is appreciably better than for

the latent variable model, the systematic appearance of the observed minima above the

diagonal and of the observed maxima below the diagonal suggest that the model does

not include enough dependence in the extremes, as one anticipates from the rapidly

decreasing extremal dependence for this model, shown in the right panel of Figure 6.

Overall the fit is not as good as that of the extremal t copula, shown in Figure 7.

A map of the pointwise 25-year return levels for this model is very similar to the

corresponding plot for the max-stable models, shown in Figure 3; both are less plausible

than the corresponding map for the latent variable model, which shows better adaptation

to local variation, though at the cost of more uncertainty for quantile estimates.
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Figure 7: Model checking for the extremal tmodel with the Whittle–Matérn correlation

function. For details, see the caption to Figure 5.

7.4 Max-stable models

In this section we focus on the max-stable models, again fitted with the marginal trend

surfaces (24)–(26). Table 5 summarises the fitted models. The Brown–Resnick and

the geometric Gaussian models have the smallest CLIC values, perhaps owing to the

behaviour of their extremal coefficients for large distances. The variance parameter σ2

in the geometric Gaussian model controls the upper bound of the extremal coefficient

function, for instance for an isotropic correlation function in R
2 θ(h) ≤ 2Φ(0.838σ), for

all h ≥ 0. Hence this model allows extremal coefficients θ(h) ≈ 2 if σ2 is large enough.

The Brown–Resnick model with variogram γ(h) = |h|α, 0 < α ≤ 2, also allows θ(h) → 2

when h → +∞, because then γ(h) → +∞. These differ from the Schlather model,

which imposes θ(h) → 1 + 1/21/2 as h→ ∞.

Isotropic and anisotropic Smith models were also considered. Their CLIC values

show that the anisotropic model is better, but both fit much less well than the other

models. This might be explained by the lack of flexibility of this model, which assumes

a deterministic shape for the storms and leads to dependence of the extremal coefficient
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Figure 8: Model checking for the Student t copula model with the Whittle–Matérn

correlation function. For details, see the caption to Figure 5.

on the Mahalanobis distance rather than on a more flexible function of distance; it

corresponds to taking the Brown–Resnick model with variogram γ(h) ∝ h2.

Apart from the Smith models, all give comparable estimates for h−, though the

choice of the correlation function may have a large impact on the estimation of h+. In

particular the Cauchy function differs greatly from the others. The best-fitting models

show values for h+ similar to those from the best extremal copula models, though the

copula models have lower CLIC values.

The geometric Gaussian model with Whittle–Matérn or stable correlation functions

and the Brown–Resnick model appear to provide the best fits to our data, though we had

difficulties in simultaneously estimating σ2, λ and κ for the former models. In accordance

with our results for the latent variable model, these parameters seem not to be jointly

identifiable (Zhang, 2004), perhaps because of the upper limit of around 90km on the

distances between sites, which means that σ2 is difficult to estimate from these data.

The safest strategy when using the geometric Gaussian model appears to be to fix one of

these parameters, preferably the range λ or shape κ, which do not determine an upper
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Smith

Correlation σ11 (km) σ12 (km) σ22 (km) h− (km) h+ (km) NoP ℓp CLIC

Isotropic 259 (45) 0 ( ∗ ) σ22 = σ11 12.4 33 8 −212455 427113

Anisotropic 251 (46) 64 (13) 290 (50) 6.6–11.1 18–30 10 −212395 427020

Schlather

Correlation λ (km) κ h− (km) h+ (km) NoP ℓp CLIC

Whittle 39.3 (21.4) 0.44 (0.12) 6.0 147 9 −210813 424200

Stable 34.8 (11.5) 0.95 (0.16) 6.3 146 9 −210815 424206

Exponential 34.1 ( 9.0) 1.00 ( ∗ ) 6.8 134 8 −210816 424167

Cauchy 8.0 ( 2.2) 0.34 (0.16) 7.1 2370 9 −210874 424321

Geometric Gaussian

Correlation σ2 λ (km) κ h− (km) h+ (km) NoP ℓp CLIC

Whittle 11.1 (3.8) 700 ( ∗ ) 0.37 (0.03) 5.8 86 9 −210349 423232

Stable 15.0 (5.4) 1000 ( ∗ ) 0.76 (0.06) 5.9 86 9 −210349 423233

Exponential 2.42 (0.93) 53.2 (18.4) 1.00 ( ∗ ) 7.0 116 9 −210368 423271

Cauchy 30.9 (8.1) 5.2 (0.66) 0.01 ( ∗ ) 6.7 192 9 −210412 423355

Brown–Resnick

Variogram λ (km) α h− (km) h+ (km) NoP ℓp CLIC

Fractional 30 (9.23) 0.74 (0.07) 5.8 84 9 −210348 423231

Brownian 29 (6.36) 1.00 ( ∗ ) 8.7 63 8 −210438 423338

Table 5: Summary of the max-stable models fitted to the Swiss rainfall data. Standard

errors are in parentheses. (∗) denotes that the parameter was held fixed. h− and h+ are

respectively the distances for which θ(h) is equal to 1.3 and 1.7. NoP is the number of

parameters. ℓp is the maximized composite log-likelihood and CLIC is the corresponding

information criterion.

bound for the extremal coefficient. Some numerical experimentation shows that σ2 and

λ are strongly related: completely different values of them can lead to indistinguishable

extremal coefficient functions, at least for the distances seen in our data.

Figure 10 show the fits of the best max-stable model to the data from the validation

stations. Pairwise dependencies seem to be well estimated whatever the distance between

two sites, and the higher-dimensional properties also seem to be accurately modelled,

even if different summary statistics are considered.

Figure 4, which plots one realization from the best Smith, Schlather, geometric Gaus-

sian and Brown–Resnick max-stable models, illustrates the differences among them. The

elliptical forms in the Smith model realization seem unrealistic, while the Schlather, ge-

ometric Gaussian and Brown–Resnick model realizations appear more plausible. The
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Figure 9: Comparison between the F -madogram estimates for the fitting (grey points)

and the validation (black points) data sets and the estimated extremal coefficient func-

tions for different max-stable models.

difference between those from the last three models is less obvious visually, though the

geometric Gaussian and Brown–Resnick models tend to give less dependence at long

ranges than does the Schlather model, owing to the restrictions that the latter imposes

on the extremal coefficient.

The drawback of the max-stable process is that it may be difficult to find accurate

trend surfaces for the marginal parameters. This may result in unrealistically smooth

pointwise return levels, similar to that shown in Figure 3.

8 Discussion

If the purpose of spatial analysis of extremes is simply to map marginal return levels

for the underlying process, a very simple approach is to applying kriging to quantiles

estimated separately for each site. The strong asymmetry in the uncertainty suggests

that this is best applied to transformed estimates, perhaps their logarithms, followed by

back-transformation to the original scale. The obvious disadvantages of this approach

are that maps for different quantiles may be contradictory, that their uncertainties may

be hard to assess, and that the resulting maps may be inconsistent with risk assessment

for more complex events.

Turning to the approaches discussed in detail above, a major asset of latent variable

models is flexibility: it is conceptually straightforward to add further elements or other

layers of variation, if they are thought to be necessary, though the computations become

more challenging. Moreover, the use of stochastic processes for the spatial distribution

of the GEV parameters enables the treatment of situations for which these parameters
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Figure 10: Model checking for the Brown–Resnick model For details, see the caption

to Figure 5.

display complex variation. Prediction at unobserved sites x+ is also straightforward

using conditional simulation of Gaussian random fields for each state of the chain, from

which observations can be generated at each x+, and it is straightforward to obtain

measures of uncertainty for quantities of interest.

Apart from generic issues related to the choice of prior distribution in Bayesian

inference, there are two main drawbacks to the latent variable approach in the present

context. The first is that after the averaging over the underlying process {S(x)}, the
marginal distribution of {Y (x)} is not of extreme-value form, and therefore will not be

max-stable. This contradicts the argument leading to (3), but might be regarded as

the price to be paid for the flexibility of including latent variables and fully Bayesian

inference; see for example Turkman et al. (2010). The second drawback is more serious,

and stems from the construction of the model: conditional on the underlying process,

extremes will arise independently at adjacent sites. This is clearly unrealistic, and seems

to undermine the use of this approach to forecasting for specific events, though it may still

be very useful for the computation of marginal properties of extremal distributions, such

as return levels. The copula-based approach of Sang and Gelfand (2009b) is intended to
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deal with this, but results in §7.3 suggest that a closely-related frequentist copula model

does not adequately explain the local extremal dependence of our annual maximum

rainfall data, so the use of Gaussian copulas cannot be regarded as wholly satisfactory.

A more promising approach has been suggested in as-yet unpublished work of Reich and

Shaby (2011), who develop a finite latent process approximation to the Smith process

in a Bayesian framework, and are thus able to approximate this model closely using

Markov chain Monte Carlo methods. They are also able to incorporate non-stationarity

and latent process models for the marginal parameters.

Our rainfall application suggests that there is an awkward trade-off to be made in

modelling spatial extremes. Latent variables allow a realistic and flexible spatial struc-

ture in the marginal distributions and thus enable a good assessment of the variation

of return levels across space, but the spatial structure they attribute to extreme events

seems quite unrealistic: compare the simulations in Figures 3 and 4. It would be worth-

while to investigate the fitting of such structures using pairwise likelihood, which is the

only approach currently available for the fitting of the spatially appropriate copula and

max-stable process models. Ribatet et al. (2012) report promising results from an inves-

tigation into the use of pairwise likelihood in Bayesian inference, but it would be good

to have a better understanding of that approach.

The connections between copula and max-stable models also need more investigation:

while the former seem to provide the best fits overall—compare Tables 4 and 5—the for-

mulation of the latter in terms of a full spatial process is very attractive. Presumably the

difference is simply a technical matter of using a spatially-defined dependence function

and extending the copula models to the full spatial domain, but the connections are

intriguing and merit further study.

Although we have used pairwise likelihood for inference, it would be worthwhile to

investigate whether the inclusion of third- and higher-order marginal densities in the

composite likelihood would increase its efficiency. Genton et al. (2011) show that this

increases the efficiency of estimation for the Smith model, but so far as we are aware

their work has not yet been extended to other max-stable models or used in applications.

Another way to improve statistical efficiency while reducing the computational burden of

composite likelihood could be the downweighting or exclusion of likelihood contributions

from sites very far apart, as suggested by Bevilacqua et al. (2011) and Padoan et al.

(2010); in the context of time series including unnecessary pairs can degrade inference

(Davis and Yau, 2011), and simulations suggest that this is also true for certain models

for spatial extremes (Gholamrezaee, 2010; Padoan et al., 2010). This is related to the

issue of the scalability of the max-stable and extremal copula analyses: the combinatorial

explosion associated with the use of pairwise likelihood might render these infeasible for
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data from thousands of sites. In such cases a judicious sub-sampling of pairs seems

necessary, but our expectation is that inference should be feasible in such settings.

We apply our ideas to block maxima, essentially because this seems to be the only

extremal setting for which spatial methods are currently available, but the extension

to threshold modelling (Davison and Smith, 1990; Coles and Tawn, 1991) would enable

more flexible inference. Encouraging results for spatio-temporal modelling of rain data

have been obtained in unpublished work by Raphaël Huser, and further exploration of

related ideas, for example due to Turkman et al. (2010), seems eminently worthwhile.

Throughout the discussion above we have supposed that the classical theory of ex-

tremes provides appropriate models for maxima, and in particular that the extremal

dependence observed in the data can be extrapolated to higher levels for which observa-

tions are unavailable. In practice dependence is often seen to decrease for increasingly

rare events, suggesting inadequacies in the classical formulation. The development of

models for so-called near-independence (Ledford and Tawn, 1996, 1997; Heffernan and

Tawn, 2004; Ramos and Ledford, 2009) of spatial extremal data would be very valuable.

Wadsworth and Tawn (2012) have begun to tackle this important topic.
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Appendix: MCMC algorithm for latent variable model

Inference for our latent variable model may be performed using a Gibbs sampler, whose

steps we now describe. Given a current value of the Markov chain

ψt = (ηt, τt, ξt, αη,t, λη,t, ατ,t, λτ,t, αξ,t, λξ,t, βη,t, βτ,t, βξ,t),

the next state ψt+1 of the chain is obtained as follows.

Step 1: Updating the GEV parameters at each site

Each component of ηt = {ηt(x1), . . . , ηt(xk)} is updated singly according to the following

scheme. Generate a proposal ηp(xj) from a symmetric random walk and compute the

acceptance probability

α{ηt(xj), ηp(xj)} = min

{

1,
π{yj | ηp(xj), τt(xj), ξt(xj)}π(ηp | αη, λη,βη)

π{yj | ηt(xj), τt(xj), ξt(xj)}π(ηt | αη, λη,βη)

}

,
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i.e., a ratio of GEV likelihoods times a ratio of multivariate Normal likelihoods. With

probability α{ηt(xj), ηp(xj)}, the η(xj) component of ψt+1 is set to ηp(xj); otherwise it

remains at ηt(xj). The scale and shape parameters are updated similarly.

Step 2: Updating the regression parameters

Due to the use of conjugate priors, βη is drawn directly from a multivariate Normal

distribution having covariance matrix and mean vector

{(Σ∗
η)

−1 +XT
ηΣ

−1
η Xη}−1, {(Σ∗

η)
−1 +XT

ηΣ
−1
η Xη}−1{(Σ∗

η)
−1µ∗

η +XT
ηΣ

−1
η η}

where µ∗
η and Σ∗

η are the mean vector and covariance matrix of the prior distribution

for βη and Xη is the design matrix related to the regression coefficients βη. Again the

regression parameters for the GEV scale and shape parameters are updated similarly.

Step 3: Updating the sill parameters of the covariance function

Due to the use of conjugate priors, αη is drawn directly from an inverse Gamma distri-

bution whose shape and rate parameters are

1
2
k + κ∗α, θ∗αη

+ 1
2
αη,t(ηt −Xηβη,t)

TΣ−1
η,t (ηt −Xηβη,t),

where κ∗αη
and θ∗αη

are respectively the shape and scale parameters of the inverse Gamma

prior distribution and Xη is the design matrix related to the regression coefficients βη.

The sill parameters of the covariance function for the GEV scale and shape parameters

are updated similarly.

Step 4: Updating the range parameters of the covariance function

Generate a proposal λη,p ∼ U(λη,t−ǫλ, λη,t+ǫλ) and compute the acceptance probability

α(λη,t, λη,p) = min

{

1,
π(ηt | αη,t, λη,p,βη,p)

π(ηt | αη,t, λη,t,βη,t)

(

λη,p
λη,t

)k∗
λη

−1

exp

(

λη,t − λη,p
θ∗λη

)}

,

a ratio of multivariate Normal densities times the ratio of the prior densities and where

κ∗λη
and θ∗λη

are respectively the shape and the scale parameters of the Gamma prior

distribution. With probability α(λη,t, λη,p), the λη component of ψt+1 is set to λη,p;

otherwise it remains at λη,t. The range parameters related to the scale and shape GEV

parameters are updated similarly. If the covariance family has a shape parameter like

the powered exponential or the Whittle–Matérn covariance functions, this is updated in

the same way.
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