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Abstract Policy makers increasingly rely on hospital competition to incentivize patients 
to choose high-value care. Amongst all possible drivers, the travel distance without any 
doubt is one of the most important. In this paper we propose the use of a spatial Bayesian 
hierarchical model to assess the impact of distance on the number of patient admissions in 
hospitals, and thereby, compare hospital attractiveness. To this aim a MCMC sampler has 
been designed. We apply our methodology to patient admissions for asthma in four hospi-
tals located in the Hérault department of France. Results indicate that the most attractive 
hospital is the CHU Montpellier.

Keywords Hospital attractiveness · Spatial Bayesian hierarchical model · Zero-inflated 
data

1 Introduction

Competition between hospitals for the provision of health care has been increasingly advo-
cated for its potential to improve efficiency as well as the quality of care (Propper and 
Leckie 2011). As a consequence of this increasing competition, it is hoped that hospitals 
decrease production costs and improve the quality of health care delivered so as to attract 
new patients. The success of this strategy depends on the patients’ propensity to switch 
hospitals in order to choose high-value care. Understanding how patients choose hospi-
tals is, therefore, of major importance for health care providers and policy makers. Hos-
pital attractiveness factors include price, quality, distance (or travel time), waiting time, 
provider network and others. Early studies identified distance or travel time as the major 
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factor negatively affecting hospital choice, including in metropolitan areas where there are 
many hospitals within short distances (Victoor et al. 2012), even though the sensitivity to 
distance varies with patient characteristics (age, ethnicity, income and religion) and the 
type of admission.

As in many European countries, French hospitals are financed through Diagnosis 
Related Groups based on a prospective payment system. Regarding acute care, this system 
was fully implemented in 2005 for private-for-profit hospital budgets and in 2008 for pub-
lic hospital budgets. The reform was intended to improve efficiency and fairness in financ-
ing and also to increase competition between and within the public and private sectors 
(Chevreul et al. 2010).

Information on hospital performance and quality in France hasn’t been published yet. 
Hospital selection is made by the patients themselves, following advice from their general 
practitioners. Since general practitioners do not face any financial incentives to refer their 
patients to a given hospital, we can assume that they take into account patient preferences, 
among other factors. Thus, we can hypothesize that reputation (Jung et al. 2011), as per-
ceived by the patients and the general practitioners, partially reflects the quality of care. In 
these circumstances, travel distance certainly plays a key role in patient decisions (Vark-
evisser et al. 2010).

In this context, spatial models describing the number of patient admissions may be use-
ful for hospital classification (from most to least attractive). Indeed in regions where sev-
eral hospitals can be chosen by the patients, it seems reasonable to think that the selected 
one meets the patient’s needs better than the other hospitals, e.g., price, quality of health 
care, ease of access, accommodation...In particular, when patients tend to visit a hospital 
regardless of the distance traveled, it seems reasonable to assume that this hospital can be 
tagged as “very attractive”. From a policy maker standpoint, such conclusions could offer a 
framework for regulation.

In this paper, we introduce a spatial Bayesian hierarchical model to assess the impact of 
distance on the number of patient admissions. In the first layer of the model, i.e., the data 
layer, the number of patients admitted to a specific hospital at a given location is modelled 
by a Poisson distribution whose mean drives how attractive is this hospital. Note however 
that it is possible that no admission occurs. Typically two different cases may cause such 
behaviour:

• All patients have decided to go to other hospitals—and hence indicates poor hospital 
attractiveness;

• All potential subjects are “healthy” or have already been healed by primary health facil-
ities, so that in both cases, there is no need for an “admission process”. In such situa-
tion, evaluation of the hospital attractiveness is impossible.

To cope with this problem, a common practice is to consider zero inflated models, e.g., 
Zero Inflated Poisson (ZIP), where a mass p is considered to capture these extra-zeros 
(Cohen 1963; Johnson and Kotz 1969). (Lambert 1992) used a ZIP model where both the 
p probability and the mean � of the Poisson distribution can depend on covariates. In this 
paper we propose to analyse in addition to covariate dependent ZIP model, Zero Inflated 
Negative Binomial (ZINB) models (Greene 1994).

Another key feature when modelling patients’ admission is that the data are intrinsi-
cally spatial as a given disease is likely to impact a town as well as its neighbouring cit-
ies. (Agarwal et al. 2002) used a spatial zero-inflated Poisson model for areal data where 
the Poisson mean is modelled by a standard log-linear model. They modelled the spatial 
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dependence of the data within the random effects that they imposed in the standard log-lin-
ear model by a Gaussian Markov field. In this paper, we suppose that the mean of the Pois-
son distribution, �(x) , depends on patient residence location x. In the second layer, i.e., the 
process layer, we model �(x) as random and assume a multivariate log-normal distribution 
whose mean vector depends on relevant covariates, e.g., distance between the patient loca-
tion x and the hospital, and covariance matrix is derived from an exponential correlation 
function family. Finally as we are working within a Bayesian framework prior distributions 
are assumed to each parameters of the model. As often with Bayesian hierarchical models, 
inference is based on the posterior distribution which can be obtained using Markov Chain 
Monte Carlo (MCMC) methods.

Section 2 describes the data set analysed in this paper. Section 3 introduces the statisti-
cal models under study while Sect. 4 describes the implementation details for our MCMC 
sampler. Section 5 presents results obtained with an illustrative data set. The paper ends 
with a brief discussion and supplementary material about the MCMC sampler can be 
found in Sect. 4.

2  The asthma data set

The principal data source used in this paper is the Programme de Médicalisation des Sys-
tèmes d’Information (PMSI). The PMSI is an administrative data set recording all patient 
admissions in French private and public hospitals covering all social health insurance pro-
grams. In this data set, limited information about the patient and the hospital stay, such as 
the disease, place of residence, location of the hospital, type of hospital, and travelling dis-
tance, are recorded. Therefore, for every region or department in France, we can obtain the 
number of patients per locality admitted in a given hospital for a given disease.

In this study we focus on the Languedoc–Roussillon region of France. The left panel of 
Fig.  1 highlights this region which is composed of five departments: Aude, Gard, Hérault, 

Aude
Gard
Herault
Lozere
Pyrenees−Orientales

ab
c d

Fig. 1  Mapping of the illustration data. The left map shows where the Languedoc-Roussillon Region is 
located in France and subsequently the Hérault department. The picture on the right displays hospital loca-
tions (a: CHU Montpellier, b: Clinique le Millénaire, c: CH Béziers and d: CH Bassin de Thau) and locali-
ties (green points) where at least one resident admission is reported in these hospitals in the study (Color 
figure online)
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Lozére and Pyrénées–Orientales. In 2009, 407 hospital patient stays were recorded for asthma 
in Hérault hospitals (see PMSI database). The department consists of 343 localities called 
“communes” (municipalities) spread over 6224  km2 with a population of approximately 
1.1 million, including both rural and metropolitan areas. The Hérault department is known to 
have a high competitive health care market in France.

In this paper we focus on the main 4 hospitals of Hérault, i.e., with the largest number 
of asthma patient stays. Among these four medical institutions, only one is private-for-profit 
while the remaining ones are not-for-profit. The right panel of Fig. 1 plots the locations of 
these four hospitals as well as the spatial locations of localities where at least one resident 
admission in these hospitals is reported. Table 1 displays the distribution of the number of 
admission per hospital.

3  Models

As a reminder, the aim of this paper is to provide a method for measuring the effect of distance 
on the spatial number of patient admissions for a given hospital by using a spatial Bayes-
ian hierarchical model, and to subsequently compare their attractiveness. We suppose that a 
patient can choose any of the hospitals in competition without any restriction than the way he 
or she perceives the attractiveness of the hospital.

For the purpose of this study, we suppose that for each localities and each hospital, we 
have access to the number of admissions. The number of residents per locality as well as the 
pairwise distance matrix between localities are available. Note however that for the distance 
between localities, the Euclidean distance was used instead of road distance. Indeed as our 
application involves a large number of localities, obtaining pairwise road distances between 
localities is difficult.

3.1  Data layer

Our first model is based on a Poisson distribution to model the number of admissions in a 
given hospital at a given location. At first sight the use of the Poisson distribution seems par-
ticularly relevant as the probability that a single person at risk gets ill and decides to go to 
a given hospital is rather small and hence justifies considering, at least theoretically, the so-
called “law of small numbers”. Let Yh(xi) denotes the number of admissions registered for hos-
pital h ∈ {1,… ,H} at the ith locality, i.e., whose geographic coordinates are xi . We assume 
that Yh(xi) follows a Poisson distribution with mean �h where �h expresses how attractive 
the hospital is for patients. Since it is sensible to assume that the function x ↦ �h(x) varies 
smoothly in space, we assume that

�h ∶ x ⟼ C(Ri)�0,h(‖xi − xh‖),

Table 1  Number of admission 
per hospital for the Asthma data 
set

Hospital Number of asthma patient stays

CH Bassin de Thau 71
CH Béziers 79
CHU Montpellier 127
Clinique Le Millénaire 23
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for some positive and non-decreasing function C and where Ri denotes the number of resi-
dent for the ith locality. One possibility for C is to take C(Ri) = KRi , K > 0 , where K is can 
be thought as the overall probability to be ill, i.e., the so called prevalence ratio, so that 
C(Ri) would represent the expected number of resident affected by asthma independently of 
the geographic location. The function d ↦ log �0,h(d) is typically taken to be a polynomial.

As stated in the introduction, the number of admissions, Yh(xi) , can be equal to zero in 
two different cases: a lack of attractiveness of hospital h (all patients have chosen to go to 
other hospitals); nobody is affected by asthma in the ith locality or have been healed by 
primary health facilities so that there is no need for an “admission process”. This feature 
induces an extra probability mass at 0 that needs to be taken into account in our modelling 
strategy. Consequently, it makes sense to use a mass p(xi) depending on locality i for zeros 
not related to attractiveness so that the first layer of our model becomes

where k ↦ k! corresponds to the factorial function.
A widely used alternative to the zero inflated Poisson model is the zero inflated negative 

binomial model. As a mixture of Poisson and Gamma distributions, there are some situa-
tions where the negative binomial distribution is better suited than the Poisson distribution. 
Keeping the same notations as in (1), the data layer for this model is

where Γ(⋅) is the Gamma function. One recover the zero inflated Poisson model as r → ∞.

3.2  Process layer

It is sensible to assume that residents from neighbouring localities will have and share the 
same habits and decisions. For instance, persons can take into consideration what their 
neighbours opinions/experience before choosing a hospital. It is therefore reasonable to 
assume that the random vector 𝜆h(�) = {𝜆h(x1),… , 𝜆h(xn)}

⊤ exhibits some kind depend-
ence. Mathematically speaking we assume that �h(�) follows a multivariate log-normal dis-
tribution so that one can benefit of the so-called borrowing strength of hierarchical models 
to characterize �h(xi) for some i ∈ {1,… , n} . We then have

where �h(�) is the mean vector of the log-normal distribution and 
�h(�) = {�h(xi − xj)}i,j=1,…,n its covariance matrix.

(1)Yh(xi) ∣ p(xi), 𝜆h(xi) ∼

{
p(xi) + {1 − p(xi)} exp{− 𝜆h(xi)}, Yh(xi) = 0

{1 − p(xi)}
𝜆h(xi)

Yh (xi )

Yh(xi)!
exp{− 𝜆h(xi)}, Yh(xi) > 0,

(2)

Yh(xi) ∣ p(xi), r, 𝜆h(xi) ∼

⎧
⎪⎨⎪⎩

p(xi) + {1 − p(xi)}
�
1 +

𝜆h(xi)

r

�−r

, Yh(xi) = 0

{1 − p(xi)}
Γ{Yh(xi)+r}

Yh(xi)!Γ(r)

�
1 +

𝜆h(xi)

r

�−r�
𝜆h(xi)

r+𝜆h(xi)

�Yh(xi)

, Yh(xi) > 0,

(3)

𝜆h(�) ∣ 𝜇h(�), 𝛾h(�),C(R) ∼ (2𝜋)−n∕2|𝛾h(�)|− 1∕2

×

n∏
i=1

𝜆h(xi)
−1 exp
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−
1

2

[
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]⊤
𝛾h(�)

−1
[
log 𝜆h(�) − 𝜇h(�)

]}
,



 Health Serv Outcomes Res Method

1 3

Since log �h(xi) = logC(Ri) + log �0,h(xi) , we have conditionally on C(Ri) , 
log �0,h(�) ∼ N{��(�), �h(�)} with �(�

�
) = ��(�

�
) + logC(Ri).

Throughout this study, we assume that

where xh denotes the geographic coordinates of hospital h ∈ {1,… ,H} . This implies that, 
for any i ∈ {1,… , n},

where �0,h = ��
0,h

+ logK so that there is no need to impose any distribution on the 
unknown prevalence ratio K.

Among all parameter, �1,h is of primary importance for our study as it controls how the 
log-mean of the Poisson/Negative binomial distribution varies with the distance from the 
hospital and therefore summarize to some extent how attractive is this hospital. As a conse-
quence it is expected that the larger the �1,h , the more attractive is hospital h. We can rank 
hospital attractiveness by ranking their respective summary of the posterior distribution of 
�1,h , e.g., posterior mean.

To avoid over pasteurization, it is often more convenient to add parametric structure for 
the covariance function. In this study we assume an isotropic exponential covariance func-
tion family for �h(�) , i.e.,

where 𝜏h > 0 is the variance and 𝜔h > 0 the scale parameter. It is well known that consider-
ing covariance function families with a shape parameter such as the powered exponential 
or Whittle–Matérn induces some non-identifiability issues (Zhang 2004; Sang and Gelfand 
2010; Davison et al. 2012). The exponential covariance family appear to be a good trade 
off between identifiability problems and flexibility.

Although a spatial correlation could be assumed on p(xi) and to avoid over parametrized 
models, we treat p as spatially constant and independent of the hospital so that we will 
write p instead of p(xi) . A preliminary study, not presented here, showed that the r param-
eter was mainly the same for all 4 hospitals. Consequently throughout this paper we will 
consider a zero inflated negative binomial model where the r parameter is constant across 
hospitals. To have a complete picture of the proposed models, Fig. 2 gives the direct acy-
clic graph for the zero inflated Poisson/negative binomial models.

3.3  Parameters prior distributions

Since we are working in a Bayesian framework, prior distributions have to be assumed on 
each parameters of the model. In this study we assign independent priors for each param-
eters, i.e., p, r, �0,h , �1,h , �h and �h . For numerical reasons we use a reparametrization for 
p by letting p = 1∕(1 + e−�) and thus assign a Gaussian prior distribution on � instead of 
p. Whenever possible we use conjugate priors to speed up our MCMC sampler. More pre-
cisely a non informative Gaussian prior distribution is assumed for �0,h and �1,h . For the 
zero inflated negative binomial model a uniform distribution on the interval (0, 100) was 
assumed for r. More care is need when defining prior distributions for �h and �h . Indeed 

��
h
(xi) = ��

0,h
+ �1,h‖xi − xh‖, i = 1,… , n, h = 1,… ,H,

�h(xi) = ��
0,h

+ logRi + logK + �1,h‖xi − xh‖
= �0,h + logRi + �1,h‖xi − xh‖,

�h(xi − xj) = �h exp

�
−

‖xi − xj‖
�h

�
,
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(Berger et  al. 2001) and (Banerjee et  al. 2004) showed that improper priors for these 
parameters, can, in general, result in improper posterior distributions. Following (Banerjee 
et al. 2004) who suggested using informative prior distributions, we assumed an Inverse-
Gamma distribution with shape and scale parameters equal to 2 for both �h and �h . As this 
specific choice for the prior distribution is somehow arbitrary, we conducted a sensitivity 
analysis about the impact of such prior distribution in Sect. 5.2.

4  Full conditional distribution

To ease the notation let �(�) = {�1(�),… , �H(�)} , �0 = (�0,1,… , �0,H) , �1 = (�1,1,… , �1,H) , 
� = (�1,… , �H) and � = (�1,… ,�H) . Similarly we write �−h(�) , �0,−h , �1,−h , �−h and �−h 
to denote the corresponding vector without the hth element. As often with hierarchical 
models, the likelihood involves multiple integrals so that likelihood—based inference is 
not possible. To bypass this hurdle, a widely used strategy is to have resort to Monte Carlo 
Markov Chain algorithms whose aim is to generate a Markov chain whose stationary distri-
bution is the posterior distribution.

For our purposes, a particularly well suited MCMC algorithm is the Gibbs sampler 
(Gelfand and Smith 1990). This sampler is based on the full conditional distributions 
which turn out to be for the zero inflated Poisson model

Similar expressions are readily obtained for the zero inflated negative binomial model.
Note that since many of the above full conditional distributions are not related to well 

identified distribution such as Gaussian or Gamma distributions, Metropolis-Hasting 
updating scheme might be used in various places (Gelman et al. 2004). When this is the 
case a random walk, eventually of the log-scale for non-negative parameters, with Gauss-
ian innovation was used. This Metropolis–Hastings within Gibbs algorithm was written in 
R (R Core Team 2017) and could be provided upon request to the authors.

�{� ∣ y(�), �(�), �0, �1, �,�} ∝ �{y(�) ∣ �, �(�)}�(�)

�{�h(�) ∣ y(�), �−h(x), �, �0, �1, �,�} ∝ �{y(�) ∣ �, �(�)}�{�h(�) ∣ �0,h, �1,h, �h,�h}

�{�0,h ∣ y(�), �, �(�), �0,−h, �1, �,�} ∝ �{�h(�) ∣ �0,h, �1,h, �h,�h}�(�0,h)

�{�1,h ∣ y(�), �, �(�), �0, �1,−h, �,�} ∝ �{�h(�) ∣ �0,h, �1,h, �h,�h}�(�1,h)

�{�h ∣ y(�), �, �(�), �0, �1, �−h,�} ∝ �{�h(�) ∣ �0,h, �1,h, �h,�h}�(�h)

�{�h ∣ y(�), �, �(�), �0, �1, �,�−h} ∝ �{�h(�) ∣ �0,h, �1,h, �h,�h}�(�h).

Yh(x)

p

λh(x)

β0,h β1,h τh ωh

Yh(x)

rp

λh(x)

β0,h β1,h τh ωh

Fig. 2  Direct acyclic graph of the Bayesian hierarchical models. Left: Zero inflated Poisson model. Right: 
Zero inflated negative binomial model
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5  Application to the asthma data set

In this section, we apply the methodology introduced in Sects. 3 and 4 to the asthma data 
of Sect. 2. Recall that our analysis focuses on 4 hospitals: CH Bassin de Thau in the city of 
Séte, CH Béziers in the city of Béziers and both CHU Montpellier and Clinique le Millé-
naire in the city of Montpellier. The localities used for estimation are all the 343 localities 
within the Hérault department of France.

5.1  Results

5.1.1  MCMC chains and estimates

For convergence control and parameter estimation, 10 Markov chains of length 50,000 
were generated. For each chain, the first 30,000 iterations were treated as burn-in-period 
and a thinning lag of 10 iterations was used to mitigate serial dependence in the simulated 
Markov chains. At the end of this post-processing of our MCMC sampler, a chain of length 
2000 that could be reasonably considered as sampled from the posterior distribution and 
showing very weak serial dependence was used. To double check if convergence to the 
stationary distribution was reached, the R̂ statistics (Aho 2015) was used. Results indicates 
that convergence to the stationary distribution, i.e., the posterior distribution, can be safely 
assumed.

Table 2 reports the estimated posterior means and its standard error obtained from these 
10 Markov chains.

5.1.2  Model selection

One first question of interest is to determine if one should prefer the zero inflated negative 
binomial model over its Poisson counterpart. To choose the model that better fits our data 
from among the ZIP and ZINB models, we used the Deviance Information Criterion (DIC), 
(Spiegelhalter et al. 2002). The smaller the DIC, the better the model fits the data. These 
DIC values are reported in Table 2 as well as their respective standard errors. Although the 

Table 2  Posterior means for the ZIP/ZINB parameters and associated Standard Errors (SE) obtained from 
10 MCMC chains for the asthma data set. The Deviance Information Criterion (DIC) for each model is also 
reported

Hospital �0,h �1,h �h �h �h∕�h

ZIP Model: p = 0.58 (0.02), DIC = 653 (6)

CH Bassin de Thau − 8.18 (0.26) − 0.058 (0.009) 1.03 (0.32) 2.5 (2.0) 0.91 (0.14)
CH Béziers − 6.99 (0.15) − 0.052 (0.004) 1.09 (0.29) 2.5 (2.5) 0.93 (0.15)
CHU Montpellier − 8.21 (0.14) − 0.015 (0.002) 0.92 (0.15) 2.4 (1.4) 0.95 (0.16)
Clinique Le Millénaire − 9.56 (0.11) − 0.019 (0.002) 0.85 (0.20) 1.4 (0.4) 0.92 (0.18)

ZINB Model: p = 0.59 (0.02), r = 47.2 (2.7), DIC = 669 (8)

CH Bassin de Thau − 8.04 (0.14) − 0.055 (0.010) 1.04 (0.29) 2.76 (1.23) 0.804 (0.17)
CH Béziers − 7.05 (0.10) − 0.055 (0.004) 1.04 (0.23) 1.98 (0.63) 0.95 (0.19)
CHU Montpellier − 8.34 (0.05) − 0.012 (0.002) 0.94 (0.09) 2.16 (1.20) 0.89 (0.17)
Clinique Le Millénaire − 9.76 (0.11) − 0.018 (0.002) 0.77 (0.08) 1.61 (0.90) 0.82 (0.20)
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difference is small, we can see that the DIC value tends to be in favour of the ZIP model. 
This conclusion could be expected since the posterior mean for r in the ZINB model is 
large and it is well known that the negative binomial distribution converges to the Poisson 
distribution as r → ∞ . Consequently and in accordance with Ockam’s razor, the DIC tends 
to prefer the simpler model, i.e., Poisson.

To confirm this conclusion we also analyse prediction performance for each model 
based on the Mean Squared Error criterion

where yh(xi) is the observed value and ŷh(xi) the computed posterior mean at locality i. 
Table 3 shows the computed MSE for both models. Although both models show good per-
formance, the MSE criteria tends to be in favour our the ZIP model and is in agreement 
with our previous conclusions. Based on these results we will therefore consider only the 
ZIP model for the rest of this study.

5.1.3  Comparing hospital attractiveness

As stated in Sect.  3, hospital attractiveness can be achieved by inspecting the posterior 
distribution of �0,h and �1,h . Of primary importance is �1,h as it controls how varies the log-
mean of the process as one goes away to the hospital while �0,h characterizes attractiveness 
at “home city”, i.e., when ‖x − xh‖ = 0 . For example, from Table 2 one can see that Clin-
ique le Millénaire is the less attractive at home city, due probably to the presence of CHU 
Montpellier in the same city. CH Béziers seems to be more attractive at home city; it is 
practically the only well-known center in the city of Béziers.

Table 2 shows that the posterior mean of �1,h are negative for all hospitals. This indi-
cates that the mean of the Poisson distribution, or equivalently hospital attractiveness, 
decreases as one moves away from the hospital. Such behaviour could be expected since, as 
identified by prior studies (Victoor et al. 2012), distance is a factor that negatively affects 
hospital choice. Although the Clinique Le Millénaire is slightly less attractive, the CHU 
Montpellier appears to be the most attractive hospital. Such findings could be expected 
since the CHU Montpellier is a well-known, large public health center and has the largest 
accommodation capacity in the region. It is also known for delivering high quality care: the 
faculty of medicine from which it depends, is one of the oldest in Europe (founded in the 
13th century). The city of Montpellier also has easy access: highway A9, railways (TGV 
and TER) and many other roads for access. The less attractive hospital is the CH Bassin de 
Thau for which more than half of admissions are from the home city (Séte) and only five 
localities out of 343 do not have zero admissions. This behaviour can be explained by the 

MSEh =
1

343

343∑
i=1

{
yh(xi) − ŷh(xi)

}2
, h = 1,… ,H.

Table 3  Mean squared error 
(MSE) and associated standard 
errors (in bracket) for the ZIP 
and ZINB models on the asthma 
data set

ZIP ZINB

CH Bassin de Thau 1.71 (1.09) 2.87 (1.31)
CH Béziers 0.85 (0.20) 1.02 (0.28)
CHU Montpellier 0.39 (0.10) 0.44 (0.08)
Clinique Le Millénaire 0.10 (0.02) 0.13 (0.04)
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fact that the CH Bassin de Thau is a small public center and is located between Montpellier 
and Béziers where the 2 largest public centers in the department are found. Séte also lacks 
the transportation facilities available in the other 2 cities : no TGV or highway. Despite its 
22 admissions, the Clinique le Millénaire seems to draw patients from farther away than 
CH Bassin de Thau and CH Béziers. The Clinique Le Millénaire is a well-known private 
center in Montpellier and its neighbourhood. It has a good reputation. The small number 
of admissions can be explained by a smaller accommodation capacity and it is, like other 
private centers, more specialized in acute health care such as surgery. It is also in the same 
city with the biggest well-known center: CHU Montpellier. Globally, the proposed center 
ranking seems sensible.

5.2  Sensitivity analysis

As stated in Sect. 3.3, to avoid improper posterior distribution one has to assume informa-
tive prior distribution on �h and �h . Since no external prior information is available for 
these parameter, the definition of informative prior distribution is somehow artificial. In 
this section we therefore investigate if posterior inference is affected by a change in these 
prior distributions.

To this aim, we used more and less informative priors for �h and �h compared to that 
used in Sect.  3.3 and check whether our conclusions remains valid. Table  4 reports the 
evolution of the posterior means when the prior distribution for �h and �h changes to an 
Inverse-Gamma(3,3) to an Inverse-Gamma (1,1)—when the prior distribution is less 
informative. While the posterior means for �0,h and �1,h appears to be fairly robust to the 
prior choice, the posterior means for �h and �h appear to be strongly affected.

It is well known the the parameter �h and �h are typically negatively correlated 
(Zhang 2004). For instance, a large variance �h combined with a large scale parameter 
�h may lead to the same overall variability than a smaller variance and small scale 
parameter. It is therefore more appropriate to analyse the sensitivity of the ratio �h∕�h 
to the prior distribution definition. Table 5 shows the evolution of the posterior mean 
of this ratio as the prior distributions for �h and �h vary. Although at first sight some 
differences are noticeable, taking into account the associated uncertainties we can see 

Table 4  Posterior means for ZIP parameters and associated Standard Errors over 10 MCMC chains for the 
asthma data set as the prior distributions for �h and �h vary

�0,h �1,h �h �h

Prior: Inverse-Gamma (3,3), p = 0.574 (0.021)
CH Bassin de Thau − 8.07 (0.14) − 0.057 (0.003) 0.99 (0.25) 1.68 (0.63)
CH Béziers − 7.04 (0.03) − 0.054 (0.002) 1.21 (0.15) 1.75 (0.41)
CHU Montpellier − 8.42 (0.03) − 0.016 (0.002) 0.95 (0.08) 1.27 (0.22)
Clinique Le Millénaire − 9.73 (0.11) − 0.016 (0.003) 0.94 (0.08) 1.25 (0.17)

Prior: Inverse-Gamma (1,1), p = 0.576 (0.013)
CH Bassin de Thau − 8.13 (0.17) − 0.056 (0.004) 1.00 (0.35) 37.24 (4.69)
CH Béziers − 7.11 (0.07) − 0.053 (0.003) 1.11 (0.22)  6.92 (4.26)
CHU Montpellier − 8.24 (0.04) − 0.015 (0.002) 0.96 (0.21)  4.38 (3.68)
Clinique Le Millénaire − 9.82 (0.05) − 0.016 (0.005) 0.84 (0.26)  2.61 (2.18)
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that the ratio �h∕�h appears to be fairly robust to the prior definition—the ratio tends to 
be larger as the prior distribution gets increasingly more informative though.

6  Discussion and conclusions

In this paper, we have presented a spatial Bayesian hierarchical model based on zero 
inflated distribution to model count data. The two proposed models were applied to 
hospital admission for asthma in the Hérault department of France. To our knowledge, 
it is the first numerical method to measure a distance effect on patient admissions or 
other similar cases, more importantly in the case of the diagnosis related groups as 
defined in France. For a given locality or in a relatively homogeneous area, these mod-
els can be used to compare hospital spatial attractiveness and thus to classify them 
from the least to the most attractive. Such ranking can be used to understand the 
impact of implemented reforms. Plausible ranks are obtained when comparing CHU 
Montpellier (first), Clinique le Millénaire (second), CH Béziers (third), and CH Bas-
sin de Thau (least) according to the admissions due to asthma in 2009 in the Hérault. 
However, certain issues associated with the method are:

• Run-time: as it often the case for MCMC modules, run-times can be long. For 
example, for our own R software codes, with 4 hospitals and 343 localities, a chain 
of length 50,000 can take over 60  h for our computer with a 2.60  GHz Intel (R) 
Core (TM) i-3230M CPU and 4 Go of memory;

• Our model does not take into consideration the presence of other hospitals. The 
processes are only linked with the mass of extra-zeros (p) and r. It would be good 
to also consider covariates that distinguish hospitals such as the size or type of hos-
pital;

• We used a linear distance function, which might be very restrictive. Further studies 
including both travelling time as a covariate and other functional relations such as 
step functions, polynomial, ...should be performed.
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Appendix A

In this section, we give the derivation of conditional parameters distributions for the ZIP 
model. To obtain the derivation for the ZINB model, the distributions used in the ZIP 
model have to be replaced by those used in the ZINB model. As a reminder, (a) Bayes 
formula is

where �(� ∣ x) is called the posterior distribution, �(�) the prior distribution and �(x ∣ �) , 
the likelihood. b) and the prior distributions used in this case study for the ZIP model are

Let’s call �{y(�), �, �(�), �0, �1, �,�} (with �(�) , �0 , �1 , � and � as defined in Sect. 4), the 
joint distribution for model parameters and the data. Using the definition of conditional 
probabilities and assuming parameters independence within their prior distributions, we 
show that

Then using Bayes formula and Eq. 4, we derive the conditional distributions

which have to be used in the Gibbs sampling. To obtain the explicit form of these distribu-
tions, every term in the right members has to be replaced by its mathematical expression. 
Thus, let’s denote n1,h the number of locations where we count zero stays for a hospital 

�(� ∣ x) =
�(x ∣ �)�(�)
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h and n2,h the number of locations where we have at least one stay in the hospital. From 
Eq. 1, Sect. 3.1,

and by definition in Sect. 3.2

By replacing every term by its explicit expression, we obtain

(5)
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