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We show how to perform full likelihood inference for max-stable multivariate distributions or

processes based on a stochastic expectation–maximization algorithm, which combines statistical

and computational efficiency in high dimensions. The good performance of this methodology

is demonstrated by simulation based on the popular logistic and Brown–Resnick models, and it

is shown to provide computational time improvements with respect to a direct computation of

the likelihood. Strategies to further reduce the computational burden are also discussed.
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1 INTRODUCTION

Max-stable distributions and processes are useful for studying high-dimensional extreme events recorded in space and/or time (Davis, Klüppelberg,

& Steinkohl, 2013; Davison, Huser, & Thibaud, 2013; de Carvalho & Davison, 2014; Huser & Davison, 2014; Huser & Genton, 2016; Padoan,

Ribatet, & Sisson, 2010). This broad but constrained class of models may, at least theoretically, be used to extrapolate into the joint tail, hence

providing a justified framework for risk assessment of extreme events. The probabilistic justification for using these models is that the max-stable

property arises in limiting models for suitably renormalized maxima of independent and identically distributed processes; see, for example,

Davison, Padoan, and Ribatet (2012), Davison and Huser (2015), and Davison, Huser, and Thibaud (2019).

Because extremes are rare by definition, it is crucial for reliable estimation and prediction to extract as much information from the data as

possible. Thus, efficient estimators play a particularly important role in statistics of extremes. Although nonparametric estimators (Vettori, Huser,

& Genton, 2018), M-estimators (Einmahl, Kiriliouk, Krajina, & Segers, 2016), and generalized least squares estimators (Buhl & Klüppelberg, 2019)

perform quite well and have reasonable efficiency in low dimensions, likelihood-based estimators remain a natural choice in higher dimensions

thanks to their appealing large-sample properties. However, the full likelihood function is excessively difficult to compute for high-dimensional

data following a max-stable distribution. As detailed in Section 3, likelihood evaluations require the computation of a sum indexed by all elements

of a given set D, the cardinality of which grows more than exponentially with the dimension, D. In a thorough simulation study, Castruccio,

Huser, and Genton (2016) stated that current technologies are limiting full likelihood inference to dimension 12 or 13, and they concluded that

without meaningful methodological advances, a direct full likelihood approach will not be feasible.

To circumvent this computational bottleneck, several strategies have been advocated. Padoan et al. (2010) proposed a pairwise likelihood

approach, combining the bivariate densities of carefully chosen pairs of observations. Although this method is computationally attractive and

inherits many good properties from the maximum likelihood estimator, it also entails a loss in efficiency, which becomes more apparent in high

dimensions (Huser, Davison, & Genton, 2016). More efficient triplewise and higher order composite likelihoods were investigated by Genton,

Ma, and Sang (2011), Huser and Davison (2013), Sang and Genton (2014), and Castruccio et al. (2016). However, they are still not fully efficient,

and it is not clear how to optimally select the composite likelihood terms. Furthermore, because composite likelihoods are generally not valid

likelihoods (Varin et al., 2011), the classical likelihood theory cannot be blindly applied for uncertainty assessment, testing, model validation and

selection, and so on, and Bayesian inference based on composite likelihoods is tricky, too (Ribatet, Cooley, & Davison, 2012).

Alternatively, Stephenson and Tawn (2005) suggested augmenting the componentwise block maxima data zn = (zn
1
, … , zn

D
)⊤, where n is the

block size, with their occurrence times. This extra information may be summarized by a random partition 𝜋n of the set {1, … ,D}, which indicates
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whether or not these maxima occurred simultaneously. Essentially, the Stephenson–Tawn likelihood corresponds to the limiting joint ‘‘density’’

of zn and 𝜋n , as n → ∞, and it yields drastic simplifications and improved efficiency; see also Bienvenüe and Robert (2017). However, Wadsworth

(2015) and Huser et al. (2016) noted that this approach may be severely biased for a finite n, especially in low-dependence scenarios. By fixing

the limit partition, 𝜋, to the observed one, 𝜋n , a strong constraint is imposed, creating model misspecification, to which likelihood methods are

very sensitive.

In this paper, to mitigate the subasymptotic bias due to fixing the limit partition to the observed one, we suggest returning to the original

likelihood formulation, which integrates out the partition rather than treating it as known. By interpreting the limit partition 𝜋 as missing data,

we show how to design a stochastic expectation–maximization algorithm (Dempster, Laird, & Rubin, 1977; Nielsen, 2000) for efficient inference.

The quality of the stochastic approximation to the full likelihood can be controlled and set to any arbitrary precision at a computational cost.

We show that higher dimensional max-stable models may be fitted in reasonable time. Importantly, our method is based solely on max-stable

data and does not require extra information about the partition or the original processes, unlike the Stephenson–Tawn likelihood or related

threshold-based methods (Huser et al., 2016). Our approach exploits the algorithm of Dombry, Éyi-Minko, and Ribatet (2013) for conditional

simulation of the partition given the data, and it can be linked to the recent papers of Thibaud, Aalto, Cooley, Davison, and Heikkinen (2016)

and Dombry et al. (2017), who in a Bayesian setting developed a Markov chain Monte Carlo algorithm for max-stable processes by treating the

partition as a latent variable that is resampled at each iteration.

The paper is organized as follows: In Section 2, we recall preliminaries on max-stable distributions and processes. In Section 3, we detail the

full and Stephenson–Tawn likelihoods, and we describe our novel stochastic expectation–maximization algorithm. To illustrate the performance

and benefits of our approach, we report simulation results for the logistic and Brown–Resnick max-stable models in Section 4. Finally, Section 5

concludes with a brief discussion.

2 MAX-STABLE PROCESSES AND DISTRIBUTIONS

2.1 Definition, construction, and models

Consider a sequence of independent and identically distributed processes Y1(s),Y2(s), … , indexed by spatial site s ∈  ⊂ Rd, and assume that

there exist sequences of functions an(s) > 0 and bn(s), such that the renormalized pointwise block maximum process (with block size n),

Zn(s) = an(s)−1
[
max{Y1(s), … ,Yn(s)} − bn(s)

]
, (1)

converges in the sense of finite-distributional distributions, as n → ∞, to a process Z(s) with nondegenerate marginal distributions; that is, Y(s) is

in the max-domain of attraction of Z(s). Then, the limit Z(s) is max-stable (see, e.g., de Haan & Ferreira, 2006, chap. 9). That is, pointwise maxima

of independent copies of the limit process Z(s) remain in the same location-scale family. Mathematically, this means that for every integer m ∈ N,

there exist functions 𝛼m(s) > 0 and 𝛽m(s) such that

max{Z1(s), … ,Zm(s)}
D
= 𝛼m(s)Z(s) + 𝛽m(s), (2)

where Z1(s), … ,Zm(s) are independent copies of Z(s) and
D
= denotes equality in distribution. In particular, the process in Equation 2 has the same

dependence structure as Z(s) itself, whereas its marginal distributions may differ in location and scale and coincide with the generalized extreme

value distribution.

Consider now points of a unit rate Poisson point process, P1,P2, … , on (0, +∞), and independent copies, W1(s),W2(s), … , of a stochastic

process W(s) ≥ 0 with unit mean. Then, the process

Z(s) = sup
j≥1

Wj(s)∕Pj, s ∈  (3)

is max-stable with unit Fréchet marginal distributions, that is, pr{Z(s) ≤ z} = exp(−1∕z), z > 0 (de Haan, 1984; Schlather, 2002). In the remainder

of the paper, we shall always consider max-stable processes Z(s) with unit Fréchet marginal distributions. Representation (3) is useful to construct

a wide variety of max-stable processes, such as the Smith model (Smith, 1990), the Schlather model (Schlather, 2002), the Brown–Resnick model

(Kabluchko, Schlather, & de Haan, 2009), the extremal-t model (Opitz, 2013), and the Tukey g-and-h model (Xu & Genton, 2016), and to simulate

from them (Dombry, Engelke, & Oesting, 2016; Schlather, 2002). Multivariate max-stable models can be constructed similarly by substituting the

processes Wj(s) in Equation 3 by analogous random vectors Wj = (Wj1, … ,WjD)⊤. From Equation 3, we deduce that the joint distribution of Z(s)
at a finite collection of sites D = {s1, … , sD} ⊂  may be expressed as

pr{Z(s1) ≤ z1, … ,Z(sD) ≤ zD} = exp{−V(z1, … , zD)}, (4)

where the exponent function V(z1, … , zD) = E
[
max {W(s1)∕z1, … ,W(sD)∕zD}

]
satisfies homogeneity and marginal constraints (see, e.g., Davison

& Huser, 2015). As an illustration, Figure 1 shows two independent realizations from the same Smith (1990) model on R defined by taking

Wj(s) = 𝜑(s − Uj; 𝜎2), s ∈  = R, in Equation 3, where 𝜑(·; 𝜎2) is the normal density with zero mean and variance 𝜎2, and the Ujs are points from

a unit rate Poisson point process on the real line. Figure 4 below illustrates realizations from the Brown–Resnick process on R2.
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FIGURE 1 Two realizations (black) from the same Smith (1990) max-stable process on the line defined by setting Wj(s) = 𝜑(s − Uj; 𝜎2) in
Equation 3, s ∈  = R, where the Ujs are points from a unit rate Poisson process on R. Grey curves show all latent profiles Wj(s)∕Pj. Here,
𝜎2 = 5. When observed at sites s = 5,10,15,20,25, the corresponding realized partitions are 𝜋 = {{1}, {2}, {3,4,5}} (left) and
𝜋 = {{1,2,3}, {4,5}} (right)

2.2 Underlying partition and extremal functions

At each site s ∈  , the pointwise supremum, Z(s), in Equation 3 is realized by a single profile Wj(s)∕Pj almost surely. Such profiles are called

extremal functions in Dombry et al. (2013). As illustrated in Figure 1, the extremal functions are only partially observed on D = {s1, … , sD}; they

define a random partition 𝜋 = {𝜏1, … , 𝜏 |𝜋|} (of size |𝜋|) of the set {1, … ,D}, called the hitting scenario in Dombry et al. (2013), that identifies

clusters of variables stemming from the same event. For example, the partition 𝜋 = {{1}, {2}, {3,4,5}} on the left panel of Figure 1 indicates

that the max-stable process at these five sites came from three separate independent events; in particular, the maxima at sites s3 = 15, s4 = 20,

and s5 = 25 were generated from the same profile.

Similarly, an observed partition 𝜋n of {1, … ,D} may be defined for the pointwise maximum process Zn(s) in Equation 1, based on the original

processes Y1(s), … ,Yn(s). The knowledge of 𝜋n tells us if the block maxima (i.e., extreme events) at different sites occurred simultaneously or not,

so 𝜋n carries information about the strength of spatial extremal dependence. If the processes Y1(s), … ,Yn(s) (suitably marginally transformed) are

in the max-domain of attraction of Z(s) in Equation 3, then the observed partition 𝜋n converges in distribution to 𝜋, as n → ∞, on the space of all

partitions D of {1, … ,D} (Stephenson & Tawn, 2005).

We now describe likelihood inference for max-stable vectors: by exploiting the information on the partition 𝜋 (Stephenson–Tawn likelihood)

or by integrating it out (full likelihood).

3 LIKELIHOOD INFERENCE

3.1 Full and Stephenson–Tawn likelihoods

By differentiating the distribution (4) with respect to the variables z1, … , zD , we can deduce that the corresponding density, or the full likelihood

for one replicate, may be expressed as

gFull(z1, … , zD) = exp{−V(z1, … , zD)}
∑
𝜋∈D

|𝜋|∏
i=1

{−V𝜏i
(z1, … , zD)}, (5)

where V𝜏i
denotes the partial derivative of the function V with respect to the variables indexed by the set 𝜏 i ⊆ {1, … ,D} (Huser et al., 2016;

Castruccio et al., 2016). The sum in Equation 5 is taken over the set of all possible partitions 𝜋 = {𝜏1, … , 𝜏|𝜋|} of {1, … ,D}, denoted by D, the

size of which equals the Bell number of order D. This leads to an explosion of terms, even for a moderate D. In fact, each partition that appears

on the right-hand side of Equation 5 corresponds to a different configuration of the profiles Wj(s)∕Pj in Equation 3 at the sites s1, … , sD . Thus,

Castruccio et al. (2016) argued that the computation of Equation 5 is limited to dimension D = 12 or 13 with modern computational resources.

As demonstrated in Appendix A using a point process argument, and originally shown by Stephenson and Tawn (2005), the joint density of the

max-stable data z = (z1, … , zD)⊤ and the associated partition 𝜋 = {𝜏1, … , 𝜏|𝜋|} ∈ D is simply equal to

gST(z1, … , zD, 𝜋) = exp{−V(z1, … , zD)}
|𝜋|∏
i=1

{−V𝜏i
(z1, … , zD)}, (6)

hence reducing the problematic sum to a single term, making likelihood inference possible in higher dimensions and simultaneously improving

statistical efficiency. Because the asymptotic partition 𝜋 is not observed, Stephenson and Tawn (2005) suggested replacing it by the observed

partition 𝜋n of occurrence times of maxima, which converges to 𝜋 under mild conditions provided the asymptotic model is well specified.

However, Wadsworth (2015) and Huser et al. (2016) showed that lack of convergence of 𝜋n to 𝜋 may result in severe estimation bias, which is

especially strong in low-dependence cases. To circumvent this problem, Wadsworth (2015) proposed a bias-corrected likelihood; alternatively,

we show in the next section how to design a stochastic expectation–maximization algorithm to maximize Equation 5, while taking advantage of

the computationally appealing nature of Equation 6.
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3.2 Stochastic expectation–maximization algorithm

It is instructive to rewrite the full likelihood (5) using Equation 6 as gFull(z1, … , zD) =
∑

𝜋∈D
gST(z1, … , zD, 𝜋) because it highlights that the full

likelihood simply integrates out the latent random partition 𝜋 needed for the Stephenson–Tawn likelihood. By interpreting 𝜋 as a missing

observation and the Stephenson–Tawn likelihood as the completed likelihood, an expectation–maximization algorithm (Dempster et al., 1977)

may be easily formulated. Assume that the exponent function V(z1, … , zD|𝜽) is parametrized by a vector 𝜽 ∈ Θ ⊂ Rp. Starting from an initial guess

𝜽0 ∈ 𝛩, the expectation–maximization algorithm consists of iterating the following E- and M-steps for R iterations:

• E-step: At the rth iteration, compute the functional

Q(𝜽,𝜽r−1) = E𝜋|z,𝜽r−1

[
log {gST(z, 𝜋|𝜽)}] = ∑

𝜋∈D

g(𝜋|z,𝜽r−1) log{gST(z, 𝜋|𝜽)}, (7)

where the expectation is computed with respect to the discrete conditional distribution of 𝜋 given the data z = (z1, … , zD)⊤ and the current

value of the parameter 𝜽r−1, that is,

g(𝜋|z,𝜽r−1) = gST(z, 𝜋|𝜽r−1)∕gFull(z|𝜽r−1). (8)

• M-step: At the rth iteration, update the parameter as 𝜽r = arg max𝜽∈ΘQ(𝜽,𝜽r−1).

Dempster et al. (1977) showed that the expectation–maximization algorithm has appealing properties; in particular, the value of the

log-likelihood increases at each iteration, which ensures convergence of 𝜽r to a local maximum, as r → ∞. In our case, however, the expectation

in Equation 7 is tricky to compute: It contains again the sum over the set D, and Equation 8 relies on the full density gFull(z|𝜽r−1), which we try

to avoid. To circumvent this issue, one solution is to approximate Equation 7 by Monte Carlo as

Q̂(𝜽,𝜽r−1) =
1
N

N∑
i=1

log {gST(z, 𝜋i|𝜽)} , 𝜋1, … , 𝜋N ∼ g(𝜋|z,𝜽r−1), (9)

where the partitions 𝜋1, … , 𝜋N are conditionally independent at best or form an ergodic sequence at least. As g(𝜋|z,𝜽r−1) ∝ gST(z, 𝜋|𝜽r−1)—see

Equation 8—it is possible to devise a Gibbs sampler to generate approximate simulations from g(𝜋|z,𝜽r−1) without explicitly comput-

ing the constant factor gFull(z|𝜽r−1) in the denominator of Equation 8. Thanks to ergodicity of the resulting Markov chain, the precision

of the approximation (9) may be set arbitrarily high by letting N → ∞ (and discarding some burn-in iterations). More details about the

practical implementation of the Gibbs sampler are given in Dombry et al. (2013) and in Appendix B. Although the number of itera-

tions of the Gibbs sampler, N, will typically be much smaller than the cardinality of D, the approximation (9) to Equation 7 will likely

be reasonably good for moderate values of N because only a few partitions 𝜋 ∈ D may be plausible or compatible with the data

z = (z1, … , zD)⊤.

The asymptotic properties of the stochastic expectation–maximization estimator, �̂�SEM, were studied in details by Nielsen (2000) and compared

with the classical maximum likelihood estimator, �̂� (see §2–3 therein, in particular theorem 2). Dombry, Engelke, and Oesting (2017) showed

that the maximum likelihood estimator �̂� is consistent and asymptotically normal for the most popular max-stable models, including the logistic

and Brown–Resnick models used in this paper. This suggests that these appealing asymptotic properties should also be satisfied for the

estimator �̂�SEM, provided some additional rather technical regularity conditions detailed in Nielsen (2000) are satisfied. If so, then the asymptotic

performance of �̂�SEM is akin to that of �̂�, though with a slightly larger asymptotic variance. Finally, the inherent variability of the stochastic

expectation–maximization algorithm may also be a blessing: Unlike the deterministic expectation–maximization algorithm, it is less likely to get

stuck at a local maximum of the full likelihood.

4 SIMULATION STUDY

4.1 General setting

To assess the performance of the stochastic expectation–maximization estimator �̂�SEM, we conducted an extensive simulation study using two

max-stable models: In Section 4.2, we report results for the multivariate logistic distribution, which is exchangeable and has a single dependence

parameter, whereas in Section 4.3, we consider the Brown–Resnick model, which is a popular spatial max-stable process governed by a range

parameter and a smoothness parameter. Whereas the logistic model serves as an illustrative ‘‘test case,’’ the Brown–Resnick model is much more

challenging and computationally intensive.

All simulations presented below were performed using the KAUST Cray XC40 supercomputer Shaheen II. Nevertheless, our implementation

can also be run on a standard laptop, and the computational times reported below correspond to single core experiments (at clock frequency

2.3 GHz). Available distributed computing resources may be exploited to significantly accelerate computations.
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4.2 Results for the logistic model

We start by considering the multivariate logistic max-stable distribution with exponent function V(z1, … , zD|𝜃) = (
∑D

j=1 z−1∕𝜃
j

)𝜃 , 𝜃 ∈ 𝛩 = (0,1].
Here, the parameter 𝜃 controls the dependence strength, with 𝜃 → 0 and 𝜃 = 1 corresponding to perfect dependence and independence,

respectively. This model was chosen for two main reasons: First, it is the simplest max-stable distribution, often used as a benchmark, that

interpolates between perfect dependence and independence; and second, the full likelihood (5) can be efficiently computed in this case using a

recursive algorithm (Shi, 1995), thus allowing us to compare �̂�SEM and the classical maximum likelihood estimator �̂� in high dimensions.

We first investigated the statistical performance of the estimator �̂�SEM under different scenarios. We simulated logistic random vectors in

dimension D = 2,5,10,20, with 20 independent temporal replicates, and 𝜃 = 0.1, … ,0.9 (strong to weak dependence). Setting the initial value

to 𝜃0 = 0.6, we chose R = 30 iterations for the expectation–maximization algorithm, averaging the last five iterations, and we took 110 × D

iterations for the underlying Gibbs sampler. Following our simulations reported in Appendix B, we discarded the first 10 × D iterations as burn-in,

and we thinned the Markov chain by a factor D, in order to keep N = 100 roughly independent partitions 𝜋 i to compute Equation (9). We repeated

the experiment 1,024 times to estimate the bias, B = E(�̂�SEM) − 𝜃, the standard deviation, SD = (E[{�̂�SEM − E(�̂�SEM)}2])1∕2, the root mean squared

error, RMSE = (B2 + SD2)1∕2 = [E{(�̂�SEM − 𝜃)2}]1∕2, and the relative error with respect to the maximum likelihood estimator, RE = E|(�̂�SEM − �̂�)∕�̂�|.
Figure 2 reports the results. As expected, the bias is negligible compared with the standard deviation, and the latter decreases with increasing

dimension D but increases as the data approach independence (𝜃 → 1). The root mean squared error (not shown) is almost only determined by

the standard deviation. The relative error is always very small (uniformly less than about 0.6%), and it decreases for the most part with D and also

with N as suggested by further unreported simulations.

We turn now our attention to the computational efficiency of the stochastic expectation–maximization algorithm. Considering dimensions up

to D = 100 under the same setting as before, the leftmost panel of Figure 3 shows that it takes on average 5–6 min to compute �̂�SEM when

D = 100 and 𝜃 = 0.9. Recall that, according to Castruccio et al. (2016), a direct evaluation of the likelihood (5) is not possible in dimensions

greater than D = 12 or 13; thus, this result is a big improvement over the current existing methods. The computational time appears to be

roughly linear with D, which is due to the number of iterations of the underlying Gibbs sampler being set proportional to D. To further reduce the

FIGURE 2 Performance of the estimator �̂�SEM: bias (left), standard deviation (middle), and relative error in % (right), for the logistic model with
𝜃 = 0.1, … ,0.9 in dimension D = 2 (thinnest black), 5 (thin red), 10 (thick green), and 20 (thickest blue), based on 20 independent temporal
replicates. The number of iterations for the expectation–maximization algorithm was set to R = 30, averaging the last five iterations, and the
number of iterations of the underlying Gibbs sampler was set to 110 × D (thinned by a factor D, after a burn-in of 10 × D iterations). The initial
value was set to 𝜃0 = 0.6

FIGURE 3 Left: Computational time for computing �̂�SEM for the logistic model, as function of dimension D, for 𝜃 = 0.3 (thin), 0.6 (medium), and
0.9 (thick). We used 20 temporal replicates, 30 expectation–maximization (EM) iterations, and 110 × D iterations for the underlying Gibbs
sampler. Middle panels: 𝜃r − �̂� as function of iteration r = 1, … ,50, for 100 independent runs in dimension D = 10. True values were set to
𝜃 = 0.3 (second panel) and 0.9 (third panel), and the initial value was set to 𝜃0 = 0.6. Right: Mean of estimated parameters �̂�SEM (red dots) with
95% confidence intervals (calculated from the 1,024 simulations) for 𝜃 = 0.3,0.6,0.9, dimension D = 10, 30 expectation–maximization
iterations, and (N + 10) × D Gibbs sampler iterations with N = 2,5,10,20,50,100,200,500, 1,000 (x-axis). In all simulations, we always
thinned the underlying Markov chains by a factor D after discarding a burn-in of 10 × D iterations
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computational burden, one possibility is to tune the number of iterations of the stochastic expectation–maximization algorithm. To investigate

its speed of convergence, the two middle panels of Figure 3 show the sample path r → 𝜃r for the logistic model as a function of the iteration

r = 1, … ,50, centred by the maximum likelihood estimator �̂� for 100 independent runs in dimension D = 10. The true values were set to

𝜃 = 0.3 (second panel) and 0.9 (third panel), and the initial value was set to 𝜃0 = 0.6. The convergence is quite fast when 𝜃 = 0.3, requiring about

five iterations, but when 𝜃 = 0.9, it takes between 15 and 25 iterations. Another possibility to reduce the computational time is to play with the

number of iterations of the underlying Gibbs sampler. The rightmost panel of Figure 3 displays estimated parameters in dimension D = 10 with

associated 95% confidence intervals (calculated from the 1,024 simulations) for 𝜃 = 0.3,0.6,0.9, using 30 expectation–maximization iterations

and (N + 10) × D iterations for the underlying Gibbs sampler with N = 2,5,10,20,50,100,200,500, 1,000. Again, we discarded the first

10 × D iterations as burn-in, and we thinned the resulting chain by a factor D. Surprisingly, the distribution of �̂�SEM is almost stable for all N ≥ 2,

suggesting that the number of Gibbs iterations does not need to be very large for accurate estimation. Overall, major computational savings

can be achieved without significant loss of accuracy, by appropriately choosing the number R of iterations for the expectation–maximization

algorithm and the number N of iterations of the underlying Gibbs sampler.

4.3 Results for the Brown–Resnick model

We now provide simulation results for the popular Brown–Resnick model (Kabluchko et al., 2009), defined by taking Wj(s) = exp{𝜀j(s) − 𝛾(s)}
in Equation (3), where the terms 𝜀j(s) are independent copies of 𝜀(s), taken as an intrinsically stationary Gaussian process with zero mean and

variogram 2𝛾(h) = var{𝜀(s) − 𝜀(s + h)} such that 𝜀(0) = 0 almost surely. The general form of the Brown–Resnick model's exponent function

and its partial derivatives may be found in Huser and Davison (2013) and Wadsworth and Tawn (2014), respectively. We chose the isotropic

semivariogram 𝛾(h) = (||h||∕𝜆)𝜈 , where 𝜆 > 0 and 𝜈 ∈ (0,2] are range and smoothness parameters, respectively, and we considered the scenarios

displayed in Table 1. Realizations for each scenario are illustrated in Figure 4.

FIGURE 4 Realizations from the Brown–Resnick model on [0,1]2, with semivariogram 𝛾(h) = (||h||∕𝜆)𝜈 , and parameter values taken according to
Table 1, covering short- to long-range-dependent processes (top to bottom) and rough to smooth processes (left to right). Realizations,
simulated exactly using the algorithm of Dombry et al. (2016), are displayed on standard Gumbel margins
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TABLE 1 Scenarios considered for the simulation study based on the Brown–Resnick model with
semivariogram 𝛾(h) = (||h||∕𝜆)𝜈

Scenario 1 2 3 4 5 6 7 8 9

𝜆; 𝜈 0.5;0.5 0.5;1.0 0.5;1.5 1.0;0.5 1.0;1.0 1.0;1.5 1.5;0.5 1.5;1.0 1.5;1.5

FIGURE 5 Boxplots of estimates of log(𝜆) (left panel) and 𝜈 (right panel) for each scenario in Table 1 based on the Brown–Resnick model with
semivariogram 𝛾(h) = (||h||∕𝜆)𝜈 , simulated at D = 10 random sites in [0,1]2, with 10 independent replicates. Red (left) and blue (right) boxplots
correspond to �̂�PAIR = (�̂�PAIR, �̂�PAIR)⊤ and �̂�SEM = (�̂�SEM, �̂�SEM)⊤, respectively. Each boxplot is based on 1,024 simulations. Five estimates reaching
up to log(�̂�PAIR) ≈ 40 were omitted in Scenario 1 for visibility purposes. Orange horizontal segments are the true values

TABLE 2 Relative efficiencies for the estimates of log(𝜆) (number on the left) and 𝜈 (number on the right)
based on the pairwise likelihood estimator with respect to the stochastic expectation–maximization estimator

𝝀=0.5 𝝀=1.0 𝝀=1.5

𝛎=0.5 𝛎=1.0 𝛎=1.5 𝛎=0.5 𝛎=1.0 𝛎=1.5 𝛎=0.5 𝛎=1.0 𝛎=1.5

39%;75% 94%;80% 77%;59% 57%;92% 82%;87% 73%;62% 54%;92% 79%;82% 71%;61%

Note. Simulations were based on the Brown–Resnick model with semivariogram 𝛾(h) = (||h||∕𝜆)𝜈 for each scenario
of Table 1, simulated at D = 10 random sites in [0,1]2 with 10 independent replicates.

In order to assess the performance of the stochastic expectation–maximization estimator for each scenario of Table 1, we simulated in each

case 10 independent copies of the Brown–Resnick model at D = 10 randomly generated sites in [0,1]2, and then we estimated the range and

smoothness parameters. We used (a) the stochastic expectation–maximization estimator �̂�SEM = (�̂�SEM, �̂�SEM)⊤ based on 60 × D = 600 Gibbs

sampler iterations in total, and then thinning by a factor D = 10, after discarding a burn-in of 10 × D = 100 iterations as suggested by the

results in Appendix B; and (b) a pairwise likelihood estimator �̂�PAIR = (�̂�PAIR, �̂�PAIR)⊤ (see, e.g., Huser & Davison, 2013; Padoan et al., 2010; Varin

et al., 2011), which maximizes the pairwise likelihood constructed by combining the likelihood contributions from all
(

10

2

)
= 45 pairs of sites

together with equal weights. We repeated this experiment 1,024 times to compute performance metrics, such as the root mean squared error of

parameter estimates.

Figure 5 displays boxplots of estimated parameters for each scenario. Both the stochastic expectation–maximization and pairwise likelihood

estimators seem to work well overall and have a negligible bias, although the estimation variability is quite high in some cases due to the tricky

estimation exercise with only 10 replicates in dimension D = 10. Nevertheless, the interquartile range appears to be quite moderate in all cases.

The stochastic expectation–maximization estimator is clearly superior to the pairwise likelihood estimator, as it fully utilizes the information

available in the data. To investigate this further, Table 2 reports relative efficiencies of the pairwise likelihood estimator with respect to the

stochastic expectation–maximization estimator, defined as the ratio between their root mean squared errors (calculated from the 1,024 replicates).

The results suggest that the stochastic expectation–maximization estimator has a much better performance overall, as expected. Moreover, such

results are expected to improve in higher dimensional settings, where the loss in efficiency of pairwise likelihood estimators is more significant.

We now check the speed of convergence of the expectation–maximization algorithm, similarly to our simulations for the logistic model reported

in Section 4.2. Figure 6 displays the value of the likelihood (left panel) and the parameters (right panel) for each iteration r = 1, … ,20 of the

expectation–maximization algorithm, for 100 simulations performed in the same setting as above with true values chosen to be 𝜆 = 𝜈 = 1.5. The

likelihood values were centred by their average over iterations 16–20 for visibility purposes. The plots show that the expectation–maximization

algorithm converges after roughly five iterations in this case, which is similar to the results obtained for the logistic model, despite the fact that the

Brown–Resnick model has one more parameter (p = 2). Hence, in practice, a small number of iterations could be chosen to speed up the algorithm.

The right panel of Figure 6 also reveals that the estimated range parameter is negatively correlated with the estimated smoothness parameter.

This was expected as these two parameters have an opposing effect on the dependence strength, and it suggests that alternative orthogonal

parametrizations might be preferable. We leave this problem for future research.

Finally, we investigate the scalability of the stochastic expectation–maximization estimator for the Brown–Resnick model when the dimension

D increases. To assess this, we considered the same setting as above with 10 independent replicates, same number of Gibbs sampler iterations,

and true values set to 𝜆 = 𝜈 = 1.5, and we measured the computational time needed for the first expectation–maximization iteration in

dimensions D = 5,10,15,20. Unlike the logistic model, which has an explicit exponent function V and partial derivatives V𝜏i
, the expressions for
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FIGURE 6 Left: Likelihood value l(𝜃r) plotted as a function of the expectation–maximization (EM) iteration r = 1, … ,20, for 100 simulations
based on the Brown–Resnick model with semivariogram 𝛾(h) = (||h||∕𝜆)𝜈 , simulated at D = 10 random sites in [0,1]2, with 10 independent
replicates. The likelihood values were centred by their average over iterations 16–20 for visibility purposes. Right: Trace of corresponding
parameter values 𝜽r = (𝜆r, 𝜈r)⊤, plotted for each expectation–maximization iteration r = 0,1, … ,20. The true parameter values (black cross ×)
are 𝜆 = 𝜈 = 1.5, while the initial values were taken to be 𝜆0 = 𝜈0 = 1

the Brown–Resnick model involve the multivariate Gaussian distribution in dimension up to D − 1 (see Huser & Davison, 2013 and Wadsworth

& Tawn, 2014), whose computation with the Genz–Bretz algorithm implemented in the R package mvtnorm is very demanding for large D. This

significantly slows down the algorithm, and a single expectation–maximization iteration using a single core takes on average 1.5 min, 12.7 min,

52.2 min, and 19.8 hr in dimensions D = 5,10,15, and 20, respectively. However, recall that Castruccio et al. (2016) argued that a direct

likelihood evaluation was simply impossible beyond dimension D = 12 or 13. As the main computational bottleneck relates to the computation

of multivariate Gaussian probabilities, strategies to speed up the Genz–Bretz algorithm are crucially needed beyond D = 20. de Fondeville and

Davison (2018) suggested that major speed-ups can be achieved by appropriately using quasi-Monte Carlo techniques for the calculation of

multivariate Gaussian distributions. Alternatively, hierarchical matrix decompositions (Genton, Keyes, & Turkiyyah, 2018) have been proven to

be exceedingly accurate and fast in high dimensions. Moreover, significant speed-ups may also be obtained by efficiently exploiting distributed

computing resources and running all Gibbs samplers (i.e., one for each temporal replicate) in parallel. We leave these computational improvements

for future research.

As far as other max-stable processes are concerned, a similar computational burden is expected for the extremal-t model (Opitz, 2013), which

relies on the computation of multivariate Student t distributions, but a better computational efficiency should prevail for the Reich and Shaby

(2012) max-stable model, for which the expressions of the exponent function V and its partial derivatives V𝜏i
are available in explicit form; see

the appendix of Castruccio et al. (2016). Overall, our experiments on the logistic and Brown–Resnick models open the road to full likelihood

inference for general max-stable models in dimensions higher than what was possible before, with a better overall scalability.

5 DISCUSSION

To address the problem of inference for max-stable distributions and processes, we have proposed a stochastic expectation–maximization

algorithm, which does not fix the underlying partition but, instead, treats it as a missing observation and integrates it out. The beauty of this

approach is that it combines statistical and computational efficiency in high dimensions, and it does not suffer from misspecification entailed by

lack of convergence of the partition. As a proof of concept, we have validated the methodology by simulation based on the logistic model, and

we have shown that in this case it is easy to make inference beyond dimension D = 100 in just a few minutes. We have also provided results

for the popular Brown–Resnick spatial max-stable model. In this case, our full likelihood inference approach can handle dimensions up to about

D = 20 in a reasonable amount of time. The difficulty resides in the computation of high-dimensional multivariate Gaussian distributions needed

for the exponent function V and its partial derivatives V𝜏i
. Unbiased Monte Carlo estimates of these quantities can be obtained, and Thibaud et al.

(2016) and de Fondeville and Davison (2018) suggest using crude approximations to reduce the computational time while maintaining accuracy;

see also Genton et al. (2018), who instead suggest using hierarchical matrix decompositions. Our method is not limited to these two models and

could potentially be applied to any max-stable model for which the functions V and V𝜏i
are known and computable. The main computational

bottleneck of our approach is that we need to generate a Gibbs sampler for each independent temporal replicate of the process. Fortunately, as

this setting is embarrassingly parallel, we may thus easily take advantage of available distributed computing resources. Finally, there is a large

volume of literature on the stochastic expectation–maximization algorithm, and it might be possible to devise automatic stopping criteria and

adaptive schemes for the Gibbs sampler to further speed up the algorithm (Booth & Hobert, 1999).

In this paper, we have also explored the variability of the stochastic expectation–maximization estimator by simulation, and we have shown

that by fully exploiting the information in the data, it has a better efficiency than composite likelihood estimators, even in the moderate

dimension we have considered (D = 10 for the Brown–Resnick model). We predict these gains to be even more significant in higher dimensions,
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although the computational aspect becomes also more challenging. In practice, it may be tricky to assess the uncertainty of the stochastic

expectation–maximization estimator and to provide confidence intervals based on a single dataset. Using bootstrap methods might be an option,

but this would explode the computational burden and thus require each bootstrap sample to be treated in parallel on a different core. In future

research, it would be interesting to study bootstrap confidence intervals and their coverage for the stochastic expectation–maximization estimator.
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APPENDIX A: LIKELIHOOD DERIVATION VIA POISSON POINT PROCESS INTENSITY

A.1 General formulation for the full likelihood gFull and Stephenson–Tawn likelihood gST

In their original paper, Stephenson and Tawn (2005) derived the likelihood functions gFull and gST by differentiating the cumulative distribution

function in Equation 4. Here, we propose a different approach based on the analysis of the Poisson point process representation (3) of the

max-stable process. By introducing the functions 𝜑j = Wj∕Pj, j = 1,2, … , the point process Φ = {𝜑j, j ≥ 1} is a Poisson point process on the

space of nonnegative functions defined on  . The max-stable process Z appears as the pointwise maximum of the functions in Φ. Dombry and

Éyi-Minko (2013) showed that for all sites s ∈  , there almost surely exists a unique function in Φ that reaches the maximum Z(s) at s. This

function is called the extremal function at s and denoted by 𝜑+
s . Clearly, Z(s) = 𝜑+

s (s).
Given D sites s1, … , sD ∈  , there can be repetitions within the extremal functions 𝜑+

s1
, … , 𝜑+

sD
, meaning that the maximum at different sites

sj1
, sj2

, can arise from the same extremal event. The notion of hitting scenario accounts for such possible repetitions. It is defined as the random

partition 𝜋 = {𝜏1, … , 𝜏 |𝜋|} (of size |𝜋|) of {1, … ,D} such that the two indices j1 and j2 are in the same block if and only if the extremal functions

at sj1
and sj2

are equal. Here, |𝜋| denotes the number of blocks of the partition 𝜋 and is equal to the number of different functions in Φ reaching

the maximum Z(s) for some point s ∈ {s1, … , sD}. Within the block 𝜏 i ∈ 𝜋, all the points sj, j ∈ 𝜏 i, share the same extremal function that will

hence be denoted by 𝜑+
𝜏i

.

The joint distribution of the hitting scenario 𝜋 = {𝜏1, … , 𝜏 |𝜋|} and extremal functions {𝜑+
𝜏1
, … , 𝜑+

𝜏|𝜋|} was derived by Dombry and Éyi-Minko

(2013). The max-stable observations Z(s1), … ,Z(sD) relate to the hitting scenario and extremal functions via the simple equation Z(sj) = 𝜑+
𝜏i
(sj) for

j ∈ 𝜏 i. In this way, we can deduce the joint distribution of the partition 𝜋 = {𝜏1, … , 𝜏 |𝜋|} and max-stable observations Z(s1), … ,Z(sD), that is, the

Stephenson–Tawn likelihood gST. Marginalizing out the random partition, we deduce the full likelihood gFull.

Suppose that the random vectors W j = {Wj(s1), … ,Wj(sD)}⊤, j ≥ 1, stemming from Equation 3, have a density fW with respect to the Lebesgue

measure on (0, +∞)D . Then, the Poisson point process {𝝋j, j ≥ 1} on (0, +∞)D , where 𝝋j = {𝜑j(s1), … , 𝜑j(sD)}⊤, has intensity

𝜆(z1, … , zD) = ∫
∞

0
fW(z1∕r, … , zD∕r)r−2−D dr. (A1)

https://doi.org/10.1002/sta4.218
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For clarity, we introduce some vectorial notation: Let Z = {Z(s1), … ,Z(sD)}⊤, z = (z1, … , zD)⊤, zi = (z1i, … , zDi)⊤, and𝝋+
𝜏i
= {𝜑+

𝜏i
(s1), … , 𝜑+

𝜏i
(sD)}⊤,

i = 1, … , |𝜋|. For 𝜏 i ⊂ {1, … ,D}, 𝜏c
i

denotes the complementary subset, and z𝜏i
and z𝜏c

i
are the subvectors of z obtained by keeping only the

components from 𝜏 i and 𝜏c
i

, respectively. Proposition 3 in Dombry and Éyi-Minko (2013) yields the following results:

• From the Poisson point process property, one can deduce the joint law of the hitting scenario and extremal functions:

pr{𝜋 = {𝜏1, … , 𝜏|𝜋|},𝝋+
𝜏1
= dz1, … ,𝝋+

𝜏|𝜋| = dz|𝜋|} = exp{−V(
|𝜋|

max
i=1

zi)}
|𝜋|∏
i=1

𝜆(zi)dzi,

provided the partition associated with z1, … , z|𝜋| is 𝜋; otherwise, this probability equals zero.

• By definition of the extremal functions, one gets the joint law of the hitting scenario and max-stable observations:

pr{𝜋 = {𝜏1, … , 𝜏|𝜋|},Z = dz} = exp{−V(z)}

( |𝜋|∏
i=1

∫ui<z𝜏c
i

𝜆(z𝜏i
, ui)dui

)
dz. (A2)

• By integrating out the hitting scenario, one obtains the law of the max-stable observations:

pr{Z = dz} = exp{−V(z)}
∑
𝜋∈D

( |𝜋|∏
i=1

∫ui<z𝜏c
i

𝜆(z𝜏i
, ui)dui

)
dz. (A3)

Equation A2 provides an alternative formula for the Stephenson–Tawn likelihood, gST, based on the Poisson point process intensity, 𝜆, whereas

Equation A3 is the max-stable full likelihood, gFull. Identifying the expressions (A2) and (A3) above with Equations 6 and 5, respectively, we can

see that

−V𝜏i
(z1, … , zD) = ∫ui<z𝜏c

i

𝜆(z𝜏i
, ui)dui. (A4)

This relates a partial derivative of the exponent function V with a partial integral of the point process intensity 𝜆. In particular, Equation (A4)

implies that the intensity is the mixed derivative of the exponent function with respect to all arguments, that is,

𝜆(z1, … , zD) = − 𝜕D∏D

i=1
𝜕zi

V(z1, … , zD). (A5)

Furthermore, the function V corresponds to the integrated intensity of the set A = [0, z]c , that is,

V(z1, … , zD) = Λ([0, z]c) = ∫A
𝜆(u)du.

A.2 Computing the Poisson point process intensity

The intensity measure 𝜆 is an important feature of max-stable models and can be computed for most popular models; see Dombry et al. (2013)

for a derivation of 𝜆 for the Brown–Resnick model (Kabluchko et al., 2009) and Ribatet (2013) for an expression of 𝜆 for the extremal-t model

(Opitz, 2013). Partial integrals of 𝜆 for these models may be found in Wadsworth and Tawn (2014) and Thibaud and Opitz (2015), respectively.

With the use of the relations (A4) and (A5), the intensity 𝜆 and its partial integrals can be deduced for the Reich and Shaby (2012) model from

the expressions in the appendix of Castruccio et al. (2016).

Here, as a simple pedagogical illustration for many other multivariate or spatial max-stable models, we consider the multivariate logistic model,

which we used in our simulation study. In this case, the function V and its partial and full derivatives can be readily obtained by direct differentiation.

Recall that the exponent function for the logistic model is

V(z1, … , zD|𝜃) = (
z−1∕𝜃

1
+ … + z−1∕𝜃

D

)𝜃

, 𝜃 ∈ (0,1].

It is known that the multivariate counterpart of the spectral representation (3) for the logistic model is obtained by taking W = (W1, … ,WD)⊤

with independent and identically distributed Fréchet(𝛽, c𝛽 ) components, where 𝛽 = 1∕𝜃 and c𝛽 = 1∕𝛤 (1 − 1∕𝛽) are shape and scale parameters,

respectively; see, for example, Proposition 6 in Dombry et al. (2016). Then,

fW(z1, … , zD) =
D∏

i=1

𝛽

c𝛽

(
zi

c𝛽

)−1−𝛽

e−(zi∕c𝛽 )−𝛽 ,

and we deduce from Equation (A1) that

𝜆(z1, … , zD) = ∫
∞

0

[
D∏

i=1

𝛽

c𝛽

(
zi

rc𝛽

)−1−𝛽

e−{zi∕(rc𝛽 )}−𝛽
]

r−2−D dr =
Γ(D − 1∕𝛽)

𝛽

{
D∑

i=1

(zi∕c𝛽 )−𝛽
}1∕𝛽−D D∏

i=1

𝛽

c𝛽

(
zi

c𝛽

)−1−𝛽

.



12 of 14 HUSER ET AL.

Similar computations entail

∫ui<z𝜏c
i

𝜆(z𝜏i
, ui)dui = ∫

∞

0

[∏
j∈𝜏i

𝛽

c𝛽

(
zj

rc𝛽

)−1−𝛽

e−{zj∕(rc𝛽 )}−𝛽
]
×
⎡⎢⎢⎣
∏
j∈𝜏c

i

e−{zj∕(rc𝛽 )}−𝛽
⎤⎥⎥⎦ r−2−|𝜏i| dr

=

{∏
j∈𝜏i

𝛽

c𝛽

(
zj

c𝛽

)−1−𝛽
}

∫
∞

0
e
−

D∑
j=1

{zj∕(rc𝛽 )}−𝛽

r𝛽|𝜏i|−2 dr

=
Γ(|𝜏i| − 1∕𝛽)

𝛽

{
D∑

j=1

(zj∕c𝛽 )−𝛽
}1∕𝛽−|𝜏i| ∏

j∈𝜏i

𝛽

c𝛽

(
zj

c𝛽

)−1−𝛽

= 𝛽 |𝜏i|−1 Γ(|𝜏i| − 1∕𝛽)
Γ(1 − 1∕𝛽)

(
D∑

j=1

z−𝛽
j

)1∕𝛽−|𝜏i| ∏
i∈𝜏i

z−1−𝛽
j

,

where, for the first equality, we used ∏
j∈𝜏c

i

∫
zj

0

𝛽

c𝛽

(
uj

rc𝛽

)−1−𝛽

e−{uj∕(rc𝛽 )}−𝛽 duj =
∏
i∈𝜏c

i

re−{zj∕(rc𝛽 )}−𝛽 .

APPENDIX B: DETAILS ON THE UNDERLYING GIBBS SAMPLER

The Gibbs sampler proposed by Dombry et al. (2013) is designed to draw an ergodic sequence of partitions 𝜋1, … , 𝜋N , whose limiting stationary

distribution is the distribution of the partition 𝜋 conditional on the observed max-stable data z = (z1, … , zD)⊤, that is, the discrete distribution

g(𝜋|z,𝜽), where 𝜽 ∈ Θ ⊂ Rp is the parameter vector characterizing the max-stable dependence structure. One has

g(𝜋|z,𝜽) = gST(𝜋, z|𝜽)
gFull(z|𝜽) =

exp{−V(z|𝜽)}∏|𝜋|
i=1

{−V𝜏i
(z|𝜽)}

exp{−V(z|𝜽)}∑
𝜋∈D

∏|𝜋|
i=1

{−V𝜏i
(z|𝜽)}

=

∏|𝜋|
i=1

{−V𝜏i
(z|𝜽)}∑

𝜋∈D

∏|𝜋|
i=1

{−V𝜏i
(z|𝜽)} ∝

∏|𝜋|
i=1

{−V𝜏i
(z|𝜽)}. (B1)

FIGURE B1 Trace plots of the sizes of partitions obtained from the Gibbs samplers for each of the five replicates (columns). We considered the
logistic model in dimension D = 50 with parameter 𝜃 = 0.9,0.6,0.3 (top to bottom rows). Initial partitions were taken as {{1}, … , {D}} (black)
and {{1, … ,D}} (red); 5,000 iterations were performed
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The normalizing constant in the denominator of Equation B1 is computationally demanding to compute as it involves the sum over all partitions.

Nevertheless, the Gibbs sampler of Dombry et al. (2013) provides a way to construct a Markov chain whose stationary distribution is g(𝜋|z,𝜽),
while avoiding the computation of the normalizing constant. Let 𝜋r = {𝜏r;1, … , 𝜏r;|𝜋r |} ∈ D be the partition at the rth iteration of the Gibbs

sampler. The idea of the Gibbs sampler is to sample the next partition 𝜋r+1 = {𝜏r+1;1, … , 𝜏r+1;|𝜋r+1|} ∈ D by keeping all but one components fixed.

Let 𝓁 ∈ {1, … ,D} be the component to be updated, and let 𝜋−𝓁
r and 𝜋−𝓁

r+1
denote the partitions 𝜋r and 𝜋r + 1, respectively, with the 𝓁th component

removed. We update the partition 𝜋r by modifying the (randomly chosen) 𝓁th component using the full conditional distribution

g(𝜋r+1|𝜋−𝓁
r+1 = 𝜋−𝓁

r , z,𝜽) ∝

∏|𝜋r+1|
i=1

{−V𝜏r+1;i
(z|𝜽)}∏|𝜋r |

i=1
{−V𝜏r;i

(z|𝜽)} . (B2)

The combinatorial explosion is avoided, because the number of possible updates 𝜋r + 1 such that 𝜋−𝓁
r+1

= 𝜋−𝓁
r is at most |𝜋r| + 1. Moreover, as

we update only one component at a time, many terms in the ratio (B2) cancel out, and at most four of them need to be computed, which makes

it computationally feasible. However, for the same reason, the resulting partitions will also be heavily dependent, and so, intuitively, we should

take the number of Gibbs sampler iterations to be roughly proportional to the dimension D and thin the Markov chain accordingly by a factor D

to get approximately independent (or weakly dependent) partitions. A suitable burn-in should also be specified to ensure that the Markov chain

has appropriately converged to its stationary distribution.

In order to assess the number of iterations required for the Gibbs sampler to converge (i.e., the burn-in), we considered the logistic model

defined by its exponent function V(z1, … , zD|𝜃) = (z−1∕𝜃
1

+ … + z−1∕𝜃
D

)𝜃 , 𝜃 ∈ (0,1]. We generated five independent copies of a logistic random

vector in dimension D = 50, and we considered the cases 𝜃 = 0.9,0.6,0.3 (weak to strong dependence). For each dataset, we ran five Gibbs

samplers (one per independent replicate) for 5,000 iterations. To easily visualize the resulting Markov chains and assess convergence, we display

in Figure B1 trace plots of the sizes of sampled partitions along the different Markov chains. The initial partitions were taken as {{1}, … , {D}}
(of size D = 50), which reflects weak dependence scenarios, and {{1, … ,D}} (of size one), which reflects strong dependence scenarios.

In all cases, we can see that the Gibbs sampler converges rather quickly and that it is enough to discard a burn-in of about 10 × D = 500

iterations.

To validate such results for another max-stable model, we did the same experiment for the Brown–Resnick model (Kabluchko et al., 2009)

with semivariogram 𝛾(h) = (||h||∕𝜆)𝜈 , where 𝜆 > 0 and 𝜈 ∈ (0,2] are the range and smoothness parameters, respectively, at D = 10 randomly

generated sites s1, … , s10 ∈ [0,1]2. We considered the cases 𝜆 = 0.5,1,1.5 (short- to long-range dependence) with 𝜈 = 1.5. For each dataset,

FIGURE B2 Trace plots of the sizes of partitions obtained from the Gibbs samplers for each of the five replicates (columns). We considered the
Brown–Resnick model at D = 10 sites in [0,1]2 with semivariogram 𝛾(h) = (||h||∕𝜆)𝜈 and parameters 𝜆 = 0.5,1,1.5 (top to bottom rows) with
𝜈 = 1.5. Initial partitions were taken as {{1}, … , {D}} (black) and {{1, … ,D}} (red); 1,000 iterations were performed
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we ran five Gibbs samplers (one per independent replicate) for 1,000 iterations. Figure B2 shows the trace plots of the sizes of sampled partitions

along the different Markov chains. As before, the initial partitions were taken as {{1}, … , {D}} (of size D = 10) and {{1, … ,D}} (of size one).

As concluded for the logistic model, we can see that the Gibbs sampler converges quickly and that about 10 × D = 100 iterations are enough

for the algorithm to converge in all cases.

These results suggest to discard the first 10 × D iterations as burn-in and to thin the resulting Markov chains by a factor D to obtain

approximately (conditionally) independent partitions. With this setting, the initial partition has negligible impact on the results. Furthermore,

another natural option could be to initialize the partition randomly from its unconditional distribution, which can be easily obtained from an

unconditional simulation of the max-stable distribution. This could potentially provide further computational savings by reducing the time it takes

for the Gibbs sampler to converge (thus reducing the burn-in).
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