
Abstract Flood frequency analysis is usually based on

the fitting of an extreme value distribution to the local

streamflow series. However, when the local data series

is short, frequency analysis results become unreliable.

Regional frequency analysis is a convenient way to

reduce the estimation uncertainty. In this work, we

propose a regional Bayesian model for short record

length sites. This model is less restrictive than the index

flood model while preserving the formalism of

‘‘homogeneous regions’’. The performance of the

proposed model is assessed on a set of gauging stations

in France. The accuracy of quantile estimates as a

function of the degree of homogeneity of the pooling

group is also analysed. The results indicate that the

regional Bayesian model outperforms the index flood

model and local estimators. Furthermore, it seems that

working with relatively large and homogeneous regions

may lead to more accurate results than working with

smaller and highly homogeneous regions.

Keywords Regional frequency analysis Æ Bayesian
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1 Introduction

Flood frequency analysis is essential in preliminary

studies to define the design flood. Methods for esti-

mating design flow usually consist of fitting one of the

distributions given by the extreme value theory to a

sample of flood events. If modelling exceedance over a

threshold is of interest, a theoretical justification

(Fisher and Tippett 1928; Balkema and Haan 1974;

Pickands 1975) exists for the use of the Generalized

Pareto (GP) distribution.

F xð Þ ¼ 1� 1þ n x� lð Þ
r

� ��1=n

ð1Þ

where 1 + n (x – l )/r > 0,r > 0. l, r and n are the

location, scale and shape parameters. This distribution

is defined for n „ 0, and can be derived by continuity

in the case n = 0, corresponding to the Exponential

case:

F xð Þ ¼ 1� exp � x� l
r

� �
ð2Þ

A comprehensive review of the Extreme Value

Theory is given by Embrechts et al. (1997) and Coles

(2001).

However, frequency analysis can lead to unreliable

flood quantiles when little data is available at the site

of interest. A convenient way to improve estimates of

flood statistics is to incorporate data from other gauged

locations in the estimation procedures. This approach

is widely applied in hydrology and is known as regional

flood frequency analysis (RFFA). One of the most

popular and simple approaches favoured by engineers
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is the index flood method (Dalrymple 1960). The

standard procedure allows: (a) the delineation of

homogeneous regions, i.e. a set of sites which

behave—hydrologically and/or statistically—in the

same way; (b) the derivation of a regional flood fre-

quency distribution; (c) and the estimation of the

parameters and quantiles at the site of interest.

Regions are collections of gauged basins with similar

site characteristics related to the flood magnitude. The

pooled stations are not necessarily close to the site of

interest. Forming homogeneous regions can be

achieved in various ways. Regions were first estab-

lished geographically. More recent work promoted the

use of geographically non-contiguous regions (Burn

1990; GREHYS 1996). Recent research has defined the

concept of ‘‘region of influence’’ (Acreman and Wilt-

shire 1989). Other techniques can be used such as

Artificial Neural Networks to identify groups of sta-

tions (Hall et al. 2002).

The index flood model assumes that flood distribu-

tions at all sites within a region are identical, up to a

scale factor. The index flood approach is not exempt

from critics as its application requires strong assump-

tions. One major implicit assumption, noticed by

Gupta etal. (1994), is that the coefficient of variation of

peak flows has to be constant across the region. This

fundamental property seems not to be verified in

practice (Robinson and Sivapalan 1997) and not

physically justified (Katz et al. 2002).

The assumptions of the index flood model often

need to be relaxed to suit the observations. For this

purpose, Gabriele and Arnell (1991) proposed a hier-

archical approach to RFFA. The skewness is still sup-

posed to be constant over the whole region, but the

coefficient of variation and the mean annual flood can

vary slightly from one subregion to another. However,

the two authors underlined the practical difficulty of

delineating these subregions.

In the index flood model, each observation from any

site within the region has the same weight. However, it

seems not optimal as, obviously, the most valuable

information comes from the target site. Indeed target

data—even short—are the only ones which are ‘‘real-

ly’’ distributed like the target site.

We suggest that it would be better to use a Bayesian

approach that encompasses the classical index flood

model and uses all the data in a more efficient manner.

In summary, the proposed Bayesian approach differs

from the index flood model as it: (a) uses the at-site

information in a more efficient way since this approach

distinguishes the target site data and the regional data

and (b) does not impose a purely deterministic rela-

tionship between sites within the region.

The main goal of this article is to test the efficiency

and robustness of the regional Bayesian model devel-

oped when dealing with short record length series. For

this purpose, classical frequency analysis i.e. local and

traditional RFFA will be compared to the suggested

regional Bayesian approach. Section 2 presents a brief

summary of the classical index flood model. Relevant

theoretical aspects of Bayesian theory are introduced

and applied to flood modelling in a RFFA context in

Sect. 3. Section 4 describes the data set used to illus-

trate the method. Section 5 describes the procedure

used to elicit the prior distribution. Section 6 outlines

the weaknesses and strengths of each approach on a

typical homogeneous region. Finally Sect. 7 presents an

analysis of the effect of homogeneity level on quantile

estimation.

2 The index flood model

The index flood method states that flood frequency

distributions within a particular region are supposed to

be identical when divided by a scale factor—namely

the index flood. Mathematically, this assumption is

expressed as:

QðSÞ ¼ CðSÞQðRÞ ð3Þ

where Q(S) is the quantile function at site S, C(S) the

index flood at site S and Q(R) the regional quantile

function i.e. the dimensionless quantile function valid

across the homogeneous region.

Equation 3 is the core of the model and leads to

strong constraints concerning at-site distribution

parameters. Consequently, the shape parameter is the

same throughout the homogeneous region, whereas the

location and scale parameters have simple scaling

behaviour—see Appendix.

Equation 3 is supposed to be satisfied if all sites are

hydrologically and/or statistically similar. Therefore,

one of the main aspects of this approach is to identify a

homogeneous region which includes the target site.

Similarity in basin characteristics is necessary but

not sufficient to ensure the homogeneity of the region

in terms of the flood peaks statistics. Hosking and

Wallis (1993, 1997) suggested a heterogeneity mea-

surement H1 to assess whether a region is ‘‘acceptably

homogeneous’’ (H1 < 1), ‘‘probably heterogeneous’’

(1 £ H1 < 2) or ‘‘definitively heterogeneous’’

(H1 ‡ 2). Note that the case H1 £ 0 seems to detect

correlations between sites within the region.

Once the region satisfies the homogeneity test of

Hosking and Wallis (1993, 1997), the regional flood
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frequency distribution and the related at-site distribu-

tion is computed in a classical way. That is, by fitting

the regional distribution to the weighted mean of

sample L-moments. Details for computing heteroge-

neity statistics, regional flood frequency and at-site

distribution can be found in (Hosking and Wallis 1993,

1997).

By definition of the index flood model, it can be seen

that any parameters derived from each sample have

the same weight. Giving equal weights to all site

observations is debatable since the most relevant

information is certainly the target site one. The rele-

vance of the target site information is obvious as this is

the only one which is ‘‘really’’ distributed like the

target site. Thus, in this approach the available infor-

mation is not efficiently used.

3 Regional Bayesian model

The Bayesian concepts have already been applied

with success to the regional frequency analysis of

extreme rainfalls (Coles and Pericchi 2003) and floods

(Madsen and Rosbjerg 1997; Northrop 2004). Re-

gional information is not used to build a regional

distribution but to specify a kind of ‘‘suspicion’’ about

the target site distribution. This is easily achieved in

the Bayesian framework through the so-called prior

distribution.

The main goal of Bayesian inference is to compute

the posterior distribution. The posterior distribution p
(h | x) is given by the Bayes Theorem:

p h xjð Þ ¼ p hð Þp h; xð ÞR
H p hð Þp h; xð Þdh

/ p hð Þp h; xð Þ
ð4Þ

where h is the vector of parameters of the distribution

to be fitted, Q is the space parameter, p(h; x) is the

likelihood function, x is the vector of observation and

p(h) is the prior distribution.

In theory, the posterior distribution is entirely

known but is often insolvable—because of the integral.

One of the solutions is to fix a prior model which leads

to an analytical—or semi-analytical—posterior distri-

bution and which allows the posterior distribution to be

computed more easily (Parent and Bernier 2003).

Nevertheless, the most convenient way is to implement

Markov Chain Monte Carlo (MCMC) techniques to

sample the posterior distribution. This approach avoids

using a purely artificial prior model with no theoretical

and/or physical justifications.

For our application, the likelihood function corre-

sponds to the GP distribution as peaks over a threshold

are of interest. From Eq. 4, if the prior distribution is

known, posterior distribution can be computed—up to

a constant. The next section describes how to define

the prior distribution.

3.1 Prior distribution

The prior model is usually a multivariate distribution

which must represent beliefs about the distribution of

the parameters i.e. l, r and n prior to having any

information about the data.

As the proposed model is fully parametric, the prior

distribution p (h) is a multivariate distribution entirely

defined by its hyper parameters. In our case study, the

marginal prior distributions were supposed to be

independent lognormal for both location and scale

parameters and normal for the shape parameter. Thus,

p hð Þ / J exp h0 � cð ÞTR�1 h0 � cð Þ
h i

ð5Þ

where c, S are hyper parameters, h¢ = (log l, log r, n)

and J is the Jacobian of the transformation from h¢ to h,

namely J = 1/l r. c = (c 1, c 2, c 3) is the mean vector,

S is the covariance matrix. As marginal priors are

supposed to be independent, S is a 3–3 diagonal matrix

with diagonal elements d1, d2, d3.

3.2 Estimation of the hyper parameters

Hyper parameters are defined through the index flood

concept. Consider all sites of a region except the target

site—say the jth site. A set of pseudo target site

parameters can be computed:

~l ið Þ ¼ l ið Þ
� C jð Þ ð6Þ

~r ið Þ ¼ r ið Þ
� C jð Þ ð7Þ

~n ið Þ ¼ n ið Þ
� ð8Þ

for all i „ j, where C(i) is the at-site Index Flood an-

d l*
(i), r*

(i), n*
(i) are respectively the location, scale and

shape at-site parameter estimates from the rescaled

sample.

Under the hypothesis of the index flood model,

pseudo parameters ~lðiÞ; ~rðiÞ; ~nðiÞ
� �

for i „ j are ex-

pected to be similar to the target site distribution

parameters. Note that, information from the target site

sample is not used to elicit the prior distribution. Thus,

C(j) in Eqs. 6 and 7 must be estimated without use of

the jth site sample.
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From these pseudo parameters, hyper parameters

can be computed:

c1 ¼
1

N � 1

X
i 6¼j

log ~l ið Þ; d1 ¼
1

N � 1

X
i 6¼j

Var log ~l ið Þ
h i

ð9Þ

c2 ¼
1

N � 1

X
i 6¼j

log ~r ið Þ; d2 ¼
1

N � 1

X
i 6¼j

Var log ~r ið Þ
h i

ð10Þ

c3 ¼
1

N � 1

X
i 6¼j

~n ið Þ; d3 ¼
1

N � 2

X
i 6¼j

~n ið Þ � c3

� �2

ð11Þ

It is important at this step to incorporate the

uncertainties on the elicitation of the prior distribution.

Indeed, it may avoid problems related to misleading

information resulting from a region not so homoge-

neous and moderating a ‘‘suspicion’’ that may be too

true.

For this purpose, two types of uncertainties are

taken into account: one from parameter estimation,

and the other from the target site index flood estima-

tion. Thus, hyper parameters c 1 and c 2 are estimated

differently than c 3, as pseudo parameters for location

and scale parameters depend on the target site index

flood. Under the hypothesis of independence between

C(j) and l*
(i), r*

(i) the variance terms in Eqs. 9 and 10 are

computed according these two types of uncertainties:

Var log ~l ið Þ
h i

¼ Var log C jð Þ
h i

þVar log l ið Þ
�

h i
ð12Þ

Var log ~r ið Þ
h i

¼ Var log C jð Þ
h i

þVar log r ið Þ
�

h i
ð13Þ

The independence assumption between C(j) and l*
(i),

r*
(i) is not too restrictive as the target site index flood

C(j) is estimated independently from l*
(i), r*

(i).

Note that Var[log Æ*
(i) ] are estimated using Fisher

Information and the Delta method. Estimation of Var

[ C(j) ] is a special case and depends on the method for

estimating the at-site index flood. Nevertheless, it is

always possible to carry out an estimation of this var-

iance, at least through standard errors.

3.3 Specificities of the proposed prior model

The construction of the prior distribution with regional

information was already suggested by Northrop (2004).

Nevertheless, the location parameter—or equivalently

the threshold in the GP case—was assumed to be

known. Yet, from a theoretical point of view, the

location parameter cannot be known prior to having

any information from the target site sample. Northrop

(2004) developed a similar approach based on the in-

dex flood but uncertainty associated with the scale

factor prediction was not considered. The prior distri-

bution was elicited directly from the distribution of the

‘‘pseudo target site’’ estimates ~lðiÞ; ~rðiÞ; ~nðiÞ
� �

: In this

perspective, ‘‘pseudo target site’’ estimates are viewed

as constant and not as random variables. When dealing

with sites with a long record, uncertainties on param-

eter distributions are low. On the contrary, this has a

much greater impact for the index flood, as uncer-

tainties are much larger since the target site index flood

is estimated without use of at-site data, even with long

record length sites. Note that if the prior distribution is

overly accurate, estimation and credibility intervals are

influenced. For these reasons and unlike the approach

proposed by Northrop (2004), the target site index

flood in the proposed methodology is considered to be

a random variable and not a constant.

Thus, our prior distribution is not too falsely ‘‘tight

fit’’. But it reflects ‘‘real’’ beliefs about target site

behaviour without any use of target site sample.

Madsen and Rosbjerg (1997) and Fill and Stedinger

(1998) both presented a regional empirical Bayesian

estimator. Both models used conjugate families for

prior distributions. However, even if conjugate families

are convenient devices, they should not only be used

just because computations are easier. In their ap-

proaches, prior distributions are elicited with quantile

regression on relevant physiographic characteristics.

Our approach differs from the two previous

empirical Bayesian approaches (i.e. the target site

sample is not used to elicit priors) and respects in that

way absolutely the Bayesian theory. Moreover, con-

jugate priors are not considered, but priors are suited

to the data. For example, the lognormal distribution

for both location and shape parameters is justified by

a physical and theoretical lower boundary as: (a)

discharge data are naturally non-negative; so the

location parameter should also be non-negative; (b)

the scale parameter is strictly positive by definition of

the GP distribution.

This prior model is quite different from that pro-

posed by Coles and Tawn (1996) who introduced a

lognormal prior distribution only for the scale param-

eter. Note that it is possible to work with return levels

(Coles and Tawn 1996) or return periods (Crowder

1992) instead of working with distribution parameters.

However, regional information is suitable for working

directly with distribution parameters. For other studies,

such prior models could be of interest if ‘‘suspicion’’ is

based on return levels or return periods.
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4 Data description

Streamflow data were collected at 48 gauging stations

in an area reaching from 45�N to 47�N and from 3�E to

8�E. The selection of the gauging sites was initially

based on the 22 regions into which France is divided

for the implementation of the Water Framework

Directive (Wasson et al. 2004). Seven regions cover the

area under study. These regions were manually delin-

eated taking into account the spatial pattern of mean

annual rainfall, altitude and underlying geology. All

these variables might influence flood generation pro-

cesses. Therefore this division is considered as a pre-

liminary guide for pooling stations. According to

Hosking and Wallis (1997), pre-regions were slightly

altered by identifying discordant sites while maximis-

ing the number of sites within the region and meeting

the heterogeneity test. Finally, a set of 14 stations was

selected for this study. The heterogeneity statistic for

this group is H1 = 0.17 < 1. Consequently, the re-

gion is considered to be ‘‘acceptably homogeneous’’.

The dataset includes seven tributaries to the Loire

River and seven gauging stations located in the French

part of the Rhône basin (Fig. 1; Table 1). The record

length of the instantaneous discharge time series ran-

ges from a minimum of 22 years to a maximum of

37 years, with a mean value of 32 years. The drainage

areas vary from 32 to 792 km2. Moreover, most of the

gauging stations monitored were on first-order stream

catchments i.e. all but two pairs of catchments are un-

nested. The large majority of floods in the region occur

during autumn and winter and are caused by heavy

rainfalls.

Partial duration flood series were extracted from the

time series for each station. Figure 2 illustrates time

series for stations U4505010, U4635010 and V3015010

and their associated thresholds. Threshold levels were

selected to extract on average about two events per

year while meeting the criteria of independence be-

tween floods (Lang et al. 1999).

Three stations U4505010, U4635010 and V3015010

were of particular interest because of their extended

record length of 37 years. The time series of these

three sites are displayed in Fig. 2.

In this case study, the scale factor was set to corre-

spond to the 1-year return flood quantile—or equiva-

lently the quantile associated with probability of

non-exceedance of 0.5. Thus, our choice for the index

flood is close to the sample median which was the ref-

erence in Robson and Reed (1999) but differs from

Hosking and Wallis (1997) where the sample mean was

used. This particular choice for the index flood is not

unintentional as estimating the quantile with a proba-

bility of non-exceedance of 0.5 is more robust than

estimating the sample mean. Analysing the influence of

index flood selection is beyond the scope of this work.

The main point is to keep the same index flood

throughout the case study to compare approaches on

the same basis.

5 Elicitation of the prior distribution

To estimate the target site index flood, the most popular

way is to develop an empirical formula that relates the

flow statistic to geomorphological, land-use and climatic

descriptors. This relationship is usually established by

multivariate regression procedures. In our case study, we

consider a simple model for which only one explanatory

variable is introduced in the regression analysis: the

drainage area. The power form model is adopted:

C ¼ aAb ð14Þ

where A is the catchment area. Parameters a and b are

computed through ordinary least square procedures on

logarithmically transformed data.

However, more sophisticated models could be car-

ried out. Nevertheless, for our case study, observations

demonstrate that Eq. 14 is a good parameterisation for

estimating the index flood. Figures 3 and 4 illustrate

the efficiency of the regressive and prior model for site

U4505010 for which:

C
_

¼ 0:12A1:01 R2 ¼ 0:94
� �

ð15Þ

Regional information was incorporated into the

prior distribution through the index flood model.

Moreover, uncertainties in the prior distribution wereFig. 1 Location of the gauging stations within the studied area
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incorporated. Thus, the prior information is, on one

hand, not too falsely accurate and on the other hand,

informative enough because of the supposed homoge-

neity of stations.

6 Performance of the Bayesian model on a

homogeneous region

When making classical inference on small samples, the

uncertainties may be too large. If an extremal event or

too many ‘‘regular events’’ in this short record period

are present, the estimation can be affected. It could

lead to a dramatic overestimation or underestimation

of quantiles corresponding to different return levels. A

perfect model is expected: (a) to perform well enough

even with small samples; (b) to be robust enough when

an extreme event occurs in the sample; (c) to be robust

enough when too many ‘‘regular’’ events occur in the

sample.

In this section, three different models will be ap-

plied. For this purpose, the three stations U4505010,

U4635010 and V3015010 were selected to assess the

robustness and efficiency of the local, regional and

Bayesian regional models. These three different ap-

proaches correspond to: (a) local: fit the GP distribu-

tion to the peaks over threshold data with the

maximum likelihood estimator (MLE), unbiased

probability weighted moments (PWU) and the biased

probability weighted moments (PWB); (b) regional

(REG): fit a regional GP distribution as described in

section2 and obtain the target site distribution; (c) re-

gional Bayesian (BAY): elicit the prior density from

regional information, then compute the posterior

density through MCMC techniques. As an illustration

of MCMC output, Fig. 5 displays the prior and pos-

terior marginal densities for the GP parameters of the

proposed model. Marginal posterior distribution ob-

tained from an uninformative prior model are also

displayed. That is with the same prior model but with a

large variance i.e. di = 1,000, i = 1, ... ,3.

Table 1 Characteristics of the stations in the homogeneous region

Code Station Area (km2) X (km) Y (km) Record

K0624510 The Bonson river at St. Marcellin 104 744.72 2,053.90 1971–2003
K0663310 The Coise river at Larajasse 61 770.67 2,072.11 1971–2003
K0704510 The Toranche river at St. Cyr 62.3 752.63 2,076.68 1977–2003
K0813020 The Aix river at St. Germain Laval 193 729.48 2,093.71 1973–2002
K0943010 The Rhins river at Amplepuis 114 754.52 2,111.10 1973–2003
K0974010 The Gand river at Neaux 85 743.45 2,107.75 1972–2003
K1004510 The Rhodon river at Perreux 32 738.40 2,116.64 1973–2003
U4505010 The Ardieres river at Beaujeu 54.5 773.67 2,130.75 1969–2003
U4624010 The Azergues river at Chatillon 336 779.07 2,099.72 1970–2003
U4635010 The Brevenne river at Sain Bel 219 775.90 2,092.57 1969–2003
U4644010 The Azergues river at Lozanne 792 782.56 2,098.09 1981–2003
V3015010 The Yzeron river at Craponne 48 785.47 2,084.50 1969–2003
V3114010 The Gier river at Rive de Gier 319 780.54 2,062.67 1981–2003
V3315010 The Valencize river at Chavanay 36 786.54 2,048.60 1978–2003
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Fig. 2 Times series for sites U4505010, U4635010 and V3015010 and thresholds associated
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Figure 5 shows the relevance of regional informa-

tion as the proposed prior model is clearly more

accurate than an analysis directly from data. Moreover,

for the proposed model and even with only 5 years

record length, marginal posterior densities are more

accurate than marginal prior densities—except for the

shape parameter. Thus, combination of regional and

target site information at two different stages is

worthwhile, even when only few data are available.

The location parameter is a special case as the modes

of both the marginal prior and posterior densities seem

to be significantly dissimilar.

As the main goal of this work is to compare models

on small samples, efficiency will be evaluated on sub-

samples from the original data. Local maximum like-

lihood estimation on the whole sample will be used as a

benchmark to assess the performance of each model.

This particular case will be denoted THEO in the

following sections. The choice of MLE estimate as a

benchmark value is reasonable because of its theoret-

ical motivation and asymptotic efficiency. Moreover,

the MLE approach allows the profile confidence

intervals to be calculated. This is a key point as these

profile confidence intervals are often more accurate

than those based on the Delta Method and Fisher

Information (Coles 2001).

Furthermore, as interpretation on quantile estimates

is more natural than for distribution parameter esti-

mates, the analysis will focus on quantiles corre-

sponding to return period 2, 5, 10 and 20 years.

Benchmark values for these quantiles—and their

associated 90% profile likelihood confidence intervals

are given in Table 2. Benchmark values with return

periods greater than 20 years will be considered unre-

liable—as uncertainties on these quantiles are too large

with only 37 years of record.

Moreover, for such return periods, benchmark val-

ues are quite similar to those obtained with PWM

estimates—with a mean bias of 0.89%. So, the per-

formance of each model is not too much affected by

the choice of the MLE estimator for benchmark values.

Different frequency curves for site V3015010 with

only the last 15 years of records are displayed in Fig. 6.

Let us focus on the highest discharge observation. The
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Fig. 4 Regression on the basin area for estimating the at-site
index flow for station U4505010
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return period related to this event is very high for the

REG approach. All the other models lead to signifi-

cantly lower return periods. This flood event is extreme

at a regional scale but not in a local context. This

underestimation is due to the misuse of the target site

sample to establish the regional distribution. On the

other hand, the regional Bayesian model performs well

for all return periods. Indeed, Fig. 6 indicates that the

return level curve is very similar to that of the bench-

mark. This is quite logical as it adds up the advantage

of efficiently using the target site sample and a good

‘‘suspicion’’ on the overall behaviour of the flood peak

distribution thanks to the so-called prior distribution.

Local approaches suggest a very heavy tail as the ex-

tremal event that occurred in 2004 (see Fig. 2, right

panel) was in the last sequence of 15 years of records.

As one of the main goals of a RFFA procedure is to

deal with small samples, the target site sample was

truncated to obtain shorter periods of records of m

years, m 2{5,10,15,20,25,30,37}. The robustness and

efficiency of the methods to converge on the parame-

ters of the target site distribution are measured. For

this purpose, quantile estimates corresponding to re-

turn periods of 2, 5, 10 and 20 years—corresponding to

non-exceedance probabilities of 0.75, 0.9, 0.95 and

0.975, respectively—are used. The evolution of quan-

tile estimates as a function of the record length period

is presented in Fig. 7. The figure only takes into

account the first m years; that is, for example, estimates

related to the 5 year record length correspond to the

period 1969–1973.

Because of the extreme event observed in 1983 (see

Fig. 2, middle panel), benchmark values for local and

REG approaches were systematically underestimated.

This result shows that: on one hand, for small samples

classical inference like MLE, PWB and PWU are too

responsive if too many ‘‘regular’’ events occurred. On

the other hand, for the index flood model, underesti-

mation of quantiles is related to the underestimation of

the scale factor C(S) in Eq. 3 because of these ‘‘regu-

lar’’ events. Only the Bayesian model performs well

enough even with record lengths lower than 15 years.

A monotonic increase of the design flood estimates

with the sample length can be noticed in Fig. 7. This

behaviour is easily explained by Fig. 2, middle panel.

Indeed, only the last part of the time series shows

really extreme events. As the record length increases,

many more extreme events occur leading to higher

estimates. The Bayesian approach is the only one

which does not really present this monotonic behav-

iour.

Moreover, the Bayesian approach is by far the

most robust and accurate model as, on the whole

range of record length, and for all benchmark values,

estimation lies in the 90% profile likelihood confi-

dence interval. This is not true with any other model.

The advantage of incorporating regional information

within a Bayesian framework is certainly to define a

‘‘restricted space’’ to which the distribution parame-

ters belong. Thus, the impact of a very extremal

event—or conversely too many low-level events—

should be regarded as an extreme event related to

this ‘‘restricted space’’.

The gain of accuracy in the target site from using

regional information is clearly established in Sect. 6

(Figs. 6 and 7). The Bayesian approach seems to be

robust even with small samples while being accurate

with a larger sample. The poor performance of the

REG model is related to a bad selection of sites within

the ‘‘homogeneous’’ region being considered and esti-

mates may have been more accurate if ‘‘better’’ regions

were considered. Unfortunately, building up such a

region is difficult because of the purely deterministic

Table 2 Benchmark values for 2, 5, 10 and 20 years quantiles and the associated 90% profile likelihood confidence intervals in
brackets

Station Q2 Q5 Q10 Q20

U4505010 10.8 (10.1, 11.7) 15.3 (13.9, 17.4) 19.5 (17.2, 23.4) 24.4 (20.6, 31.5)
U4635010 33.0 (30.0, 36.5) 52.2 (45.5, 62.5) 72.2 (60.2, 95.4) 98.9 (69.2, 200.5)
V3015010 7.5 (6.9, 8.3) 11.7 (10.4, 13.7) 15.9 (13.6, 19.9) 21.3 (17.3, 28.8)
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relation (3). As the Bayesian approach relaxes the

REG model, the search for more homogeneous regions

could be ineffective. The goal of the next section is to

measure the potential gain, for the Bayesian model,

against homogeneity property.

7 Effect of degree of heterogeneity on quantile
estimation

As indicated in the previous section, we focus now on

the impact of the degree of homogeneity of the region.

For this purpose, we consider four different re-

gions—denoted He+, He, Ho and Ho+, which corre-

spond to increasingly homogeneous regions according

to the test of Hosking and Wallis (1997). The Ho re-

gion corresponds to the region analysed in the previous

section and described in Table 1. All regions have 14

sites except for the most homogeneous one Ho+ which

contains only 8 stations. He and He+ regions are de-

rived from Ho. One to five sites are withdrawn and

replaced by other stations to obtain a higher hetero-

geneity value. The Ho+ region is a sub-region of Ho.

Heterogeneity statistics for these regions are summar-

ised in Table 3.

To evaluate the influence of degree of homogeneity

of a region on quantile estimation, models are assessed

using two performance criteria: the Normalised Bias

(NBIAS) and the Normalised Root Mean Square Er-

ror (NRMSE). These indices are defined as follows:

NBIAS ¼ 1

k

Xk

i¼1

Q
_

i �Q

Q
ð16Þ

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k

Xk

i¼1

Q
_

i �Q

Q

 !2
vuut ð17Þ

where k is the number of estimates of Q and Q
_

i is the

ith estimate of the benchmark value Q. To compute

these two indices, we fit all models on all trimmed
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Fig. 7 Evolution of Q2 ,Q5 ,Q10 ,Q20 estimates as the size increases for the site U4635010 and 90% profile likelihood confidence
interval for the benchmark values—light blue area

Table 3 Heterogeneity statistics for the four regions
considered—statistics in brackets are obtained with the scale
factor taken to be the 1-year quantile corresponding to a non-
exceedance probability of 0.5

Region He+ He Ho Ho+

H1 7.11 (6.83) 1.35 (1.37) 0.17 (0.08) – 0.60 ( – 0.67)
H2 3.46 (3.38) 1.00 (1.03) 0.41 (0.33) – 1.28 ( – 1.31)
H3 1.40 (1.45) 0.30 (0.28) – 0.09 ( – 0.14) – 1.14 ( – 1.18)
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periods of size m years—m 2{5,10,15,20,25,30,37}.

Moreover, the overall performance of each model is

evaluated using a rank score. This technique was al-

ready used to compare different models in Shu and

Burn (2004).

To calculate the rank score, the p models are or-

dered using their performance indices—1 correspond-

ing to the best model and p to the worst. For each

model, the scores for the different criteria are summed

to obtain the overall rank score RO for the model. For

convenience, the overall rank score RO is standardised

in such a way that in lies within the interval [0, 1]:

RS ¼
pq� RO

pq� q
ð18Þ

where p is the number of models being considered, and

q the number of indices. A standardised rank score

close to 1 is associated with a model with a good per-

formance, and 0 with that of poor performance.

Three quantiles are of particular interest Q5, Q10

and Q20—i.e. associated with a probability of non-ex-

ceedance of 0.9, 0.95 and 0.975, respectively. NRMSE,

NBIAS and the standardised rank score for station

U4635010 and a record length of 5 years are illustrated

in Table 4. Notations for different models in this table

consist of one lowercase letter referring to the Bayes-

ian approach b or the Regional Index Flood r and the

code for the degree of the homogeneity of the region.

Only the MLE model does not use these codes as it is

completely independent of the homogeneity level.

The results from Table 4 demonstrate that the

Bayesian model performs quite well independently of

the region being considered. However, this model

seems to perform even better when applied to an

‘‘acceptably homogeneous’’ or ‘‘probably hetero-

geneous’’ region. For the Ho+ region, the Bayesian

approach performs poorly. This may be explained by

the fact that the prior distribution is too informative

and probably not consistent with the target site sample.

This comment does not apply to the good overall

performance of the REG model on this region. Indeed,

as the prior distribution is elicited using Eqs. 6, 7, 8,

and the scale factor C(j) is estimated without any use of

the target site sample, this can lead to a misleading

prior distribution while the REG model performs well.

The bad estimation of the scale factor is less important

with a more heterogeneous region as the prior infor-

mation is less informative, thus the Bayesian model

performance is not highly affected.

On the other side, the overall rank score of the REG

model increases with the degree of homogeneity of the

region. Yet, the overall rank score for the REG model

never exceeds the value of 0.6—reached for the Ho+

region. This value remains much lower than the best

rank score for the Bayesian model—i.e. 0.85. These

results corroborate the superiority of the Bayesian

approach.

From Table 4, two conclusions can be established.

On one hand, for small samples, the Bayesian ap-

proach is the most efficient model. On the other hand,

the results seem to indicate that there is no need to

keep increasing the homogeneity of the region as it

increases the risk of being too confident in the

‘‘homogeneous region’’ without increasing significantly

the efficiency of the model.

These results are in line with similar results obtained

for stations U4505010 and V3015010, except for the

poor behaviour of the Bayesian model on the Ho+

region. Indeed, for the other stations, the Bayesian

model remains more efficient than the REG model

within the Ho+ region. However, its overall rank score

remains stable through out the different regions -it He,

Ho and Ho+. The ‘‘risk’’ of dealing with a too homo-

geneous region such as Ho+ is also corroborated, as the

overall rank score for the index flood model for station

U4505010 decreases dramatically to 0.06. Thus, the

index flood for the Ho+ region performs quite well for

stations U4635010 and V3015010, while very surpris-

ingly badly with U4505010.

Table 4 Estimation of NRMSE and NBIAS for station U4635010 with a record length of 5 years

Model NRMSE NBIAS Rank score

Q5 Q10 Q20 Q5 Q10 Q20

MLE 0.33 0.34 0.39 0.01 – 0.09 – 0.18 0.26
bHe+ 0.16 0.13 0.18 0.09 – 0.02 – 0.13 0.65
rHe+ 0.27 0.30 0.37 – 0.12 – 0.22 – 0.31 0.18
BHe 0.10 0.07 0.11 0.08 0.00 – 0.09 0.85
RHe 0.27 0.26 0.28 – 0.03 – 0.10 – 0.17 0.43
bHo 0.14 0.09 0.08 0.12 0.05 – 0.02 0.76
rHo 0.27 0.26 0.27 0.01 – 0.06 – 0.12 0.58
bHo+ 0.29 0.28 0.25 0.29 0.27 0.25 0.19
rHo+ 0.28 0.27 0.26 0.02 – 0.01 – 0.04 0.60
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In Fig. 8, the changes in the overall rank score as a

function of the record length is illustrated for station

V3015010. The left panel corresponds to the REG

method, while the right one stands for the Bayesian

approach. The MLE scores are also presented in both

panels. Fig. 8 indicates that the changes in the overall

rank score are more stable for regional models, i.e.

REG and Bayesian models, than for MLE. Further-

more, the benefit of increasing the degree of homo-

geneity of the region is more relevant for the REG

model than for the Bayesian model. Nevertheless, the

worst Bayesian rank score is always quite close to the

best REG rank score. This seems to indicate the

superiority of the Bayesian approach. This last point is

corroborated with the results corresponding to stations

U4505010 and U4635010 except for the bHo+ model

for station U4635010 because of the bad estimation of

the scale factor C(j), as mentioned earlier. The effect of

bad estimation of the target site Index Flood on prior

and thereby on posterior distributions is depicted in

Fig. 9.

From Fig. 9, it is overwhelmingly clear that the prior

model is not appropriate—particularly for the location

parameter. The prior for the shape parameter is not

too false as it does not depend on the target site index

flood estimate.

As the record length increases, the MLE model

becomes increasingly efficient. In particular, for record

lengths greater than 15 years, it is more effective than

rHe+, rHe and rHo models. On one hand, for record

lengths smaller than 15 years, MLE is always less

efficient than Bayesian approaches and even signifi-

cantly for bHe, bHo and bHo+ models. This is quite

logical as Bayesian estimation can be looked at as a

restrictive maximum likelihood estimator - restriction

being defined by the prior distribution. So, under the

hypothesis that the prior distribution is well-defined,

the ‘‘restrictive estimator’’ is unbiased and has a

smaller variance. On the other hand, for record lengths

greater than 15 years, MLE, bHe and bHo seems to be

similar.

8 Conclusion

A framework for performing a regional Bayesian fre-

quency analysis for partially gauged stations is pre-

sented. The proposed model has the advantage of

being less restrictive than the most widely used re-

gional model, that is the index flood. Several case

studies from French sites were analysed to illustrate

the superiority of the Bayesian approach in comparison

to the traditional index flood and to local approaches.

The influence of the homogeneity level of the pooling

group on quantile estimates was also considered. The

results demonstrate that working with quite large and

homogeneous regions rather than small and strongly

homogeneous regions is more efficient. Further work

can focus on the regional estimation of other charac-

teristics of the flood hydrograph. For instance, a re-

gional Bayesian model can focus on Flood Duration

Frequency.

All statistical analysis was carried out in the R

Development Core Team (2005) framework. For this

purpose, two packages were contributed to this soft-

ware within the framework of the present research

work. These two packages integrate the tools that were

developed to carry out the modelling effort presented

in this paper. The first one POT performs statistical

inference on peaks over thresholds, while the second

one, RFA, contains several tools to carry out a regional

frequency analysis. These two packages are available,

free of charge, at the web site http://www.R-project.

org, section CRAN, Packages.
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9 Appendix: Properties of the index flood on GP

parameters

We provide in this appendix the proof for the following

theorem:

Theorem 1 Let X be a random variable GP distrib-

uted. So X has the cumulative distribution function

defined by:

F xð Þ ¼ 1� 1þ n x� lð Þ
r

� ��1=n

Let Y = CX where C 2 R
þ
� : Then, Y is also GP dis-

tributed with parameters (l C,r C,n).

Proof Let X be a r.v. GP distributed with parame-

ters (l, r, n) and Y = CX where C 2 R
þ
� : Then:

Pr Y � y½ � ¼ Pr X � y

C

h i
¼ 1� 1þ n yC � lð Þ

r

� ��1=n

¼ 1� 1þ n y� lCð Þ
rC

� ��1=n

So, Y is also GP distributed with parameters (l C,r
C,n). The proof for the GEV case can be established in

the same way.
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