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1 Normal toy example

We consider the hierarchical Normal mean model

yi | θ1,θ2 ∼N (θ1,θ2),

θ1 | θ2 ∼N (0,θ2),

θ2 ∼ IG (4,3),

where IG (κ,λ ) denotes an inverse Gamma distribution with shape parameter κ and scale parameter λ . Let y =

(y1, . . . ,yn) be a n-sample from the above model. Given these conjugate distributions, the marginal posterior distribu-

tions of the parameters θ1 and θ2 are closed-forms:

θ1 | y∼T
(
n+8,(nȳ)/(n+1),(s2 +6)/((n+1)(n+8))

)
,

θ2 | y∼ IG
(
n/2+4,s2/2+3

)
,

where ȳ is the sample mean and s2 = ∑
n
i=1(yi− ȳ)2 the sum of squared deviations. T (ν ,a,b) denotes the general t

distribution with ν degrees of freedom [7].

From the above expressions and for a given sample y, it is straightforward to derive the exact values of E(θ1 | y),
Var(θ1 | y), E(θ2 | y), Var(θ2 | y) and posterior quantiles for the two parameters. This provides us with a benchmark on

which to assess the performances of ABC-RF. For the present simulation study, we opted for a reference table made

of N = 104 replicates of a sample of size n = 10 and k = 61 summary statistics. Those statistics included the sample

mean, the sample variance, the sample median absolute deviation (MAD), all possible sums and products with these

three elements resulting in eight new summary statistics and 50 additional independent (pure) noise variables that were

generated from a uniform U[0,1] distribution. The performances of our method were evaluated on an independent test

table of size Npred = 100, produced in the same way as the reference table. Current ABC methods (rejection, adjusted

local linear, ridge and neural network) all depend on the choice of a tolerance level pε corresponding to the proportion

of selected simulated parameters with lowest distances between simulated and observed summary statistics. On this

example we consider a tolerance level of pε = 0.01 for ABC with rejection, and pε = 0.1 for the ABC methods

with adjustment. We also compare estimation results obtained from the adaptive ABC-PMC algorithm described

in [10] (Algorithm 5). We implement two designs of this scheme with both 2000 simulated particles per iteration,

1000 accepted particles, schemes iterate until we get approximately 104 (a-PMC-1) and 105 (a-PMC-2) simulated

particles. Finally, we carry out additional comparisons with two sequential ABC methods: ABC-PMC based on the

algorithm of [1] and ABC-SMC based on the algorithm of [4]. Two different implementations of ABC-PMC (named

PMC-1 and PMC-2) are considered. PMC-1 and PMC-2 include 1000 and 100 simulated particles per iteration, 100
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and 10 accepted particles and 10 and 100 iterations, respectively, resulting in 104 simulated particles. Two different

implementations of ABC-SMC (named SMC-1 and SMC-2) are considered. Both SMC-1 and SMC-2 include 1000

simulated particles per iteration and a stopping rule based on two pre-computed quantiles of the distances between the

observed summary statistics and simulated ones. For SMC-1, we use a quantile of 10% and for SMC-2 a quantile of

1%. At the end, we simulate approximately 40000 particles for SMC-1 and 360000 for SMC-2. Furthermore, we also

compare with an ABC-SMC scheme (named py-SMC-1 and py-SMC-2) using adaptive population sizes described in

[5], using the pyABC python module [6]. An initial population size equal to 1000 is used and two different values of a

target density variation. An additional version of ABC-PMC (named py-PMC-1 and py-PMC-2) is implemented using

this module to mimic the PMC-1 and PMC-2 designs. In some comparisons, we considere two different situations by

including or not a large number of noise variables (50 or 500 noise variables drawn into uniform distributions on [0,

1]) as explanatory variables. The R codes are available at

https://github.com/jmm34/abc-rf-param.

Figure S1 compares the exact values ψ1(y)=E(θ1 | y), ψ2(y)=E(θ2 | y), ψ3(y)=Var(θ1 | y) and ψ4(y)=Var(θ2 |
y) with the estimates obtained from the ABC-RF approach. It shows that the proposed estimators have good overall

performances for both ψ1(y) and ψ2(y), although one can see that ψ2(y) tends to be slightly overestimated. Our

estimators perform less satisfactorily for both ψ3(y) and ψ4(y) but remain acceptable. Figure S2 shows furthermore

that the quantile estimation are good for θ1 if less accurate for θ2.

We then run an experiment to evaluate the precision of the marginal posterior approximation provided by ABC-RF

for the parameter θ1, using two different test datasets and 40 independent reference tables. As exhibited in Figure S3,

results are mixed. For one dataset, the fit is quite satisfactory, with the RF approximation showing only slightly fatter

tails than the true posterior density distribution function (Figure S3; upper panel). For the other dataset, we obtain

stronger divergence both in location and precision of the posterior density distribution function (Figure S3; lower

panel).

Using the same reference table, we now compare our ABC-RF results with a set of five earlier ABC methods,

namely, ABC methods based on straightforward rejection, adjusted local linear, ridge regression, adjusted neural

networks and adaptive ABC-PMC. Table S1 shows that the ABC-RF approach leads to results better than all other

ABC methods for all quantities of interest. Expectations and quantiles are noticeably more accurately predicted.

Figure S4 compares differences between estimated and true values of the posterior variances ψ3(y), ψ4(y). It shows

the global underestimation associated with rejection and ABC methods with adjustment, when compared to ABC-RF,

the latter only slightly overestimating the posterior variance. The adaptive ABC-SMC method performs very decently

for ψ4(y), however highly overestimates ψ3(y). Finally, by looking at the width of the boxplots of Figure S4, we

deduce that our ABC-RF estimations exhibit a lower estimation variability.
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Figure S1: Scatterplot of the theoretical values ψ1(y) = E(θ1 | y), ψ2(y) = E(θ2 | y), ψ3(y) = Var(θ1 | y) and ψ4(y) =

Var(θ2 | y) for the Normal model with their corresponding estimates ψ̃1, ψ̃2, ψ̃3, ψ̃4 obtained using ABC-RF. Variances

are represented on a log scale.
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Figure S2: Scatterplot of the theoretical values of 2.5% and 97.5% posterior quantiles for θ1 and θ2, for the Normal

model with their corresponding estimates obtained using ABC-RF.
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Figure S3: Comparisons of the true posterior density distribution function of θ1 in the Normal model with a sample

of 40 ABC-RF approximations of the posterior density (using RF weights), based on 40 independent reference tables

and for two different test datasets (upper and lower panels). True posterior densities are represented by red lines.
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RF Reject ALL ARR ANN py-SMC-1

ψ1(y) = E(θ1 | y) 0.18 0.32 0.34 0.31 0.46 0.23

ψ2(y) = E(θ2 | y) 0.10 0.14 0.19 0.23 0.21 0.11

ψ3(y) = Var(θ1 | y) 0.30 2.44 0.74 0.70 0.48 0.96

ψ4(y) = Var(θ2 | y) 0.38 0.59 0.69 0.71 0.97 0.49

Q0.025(θ1|y) 0.31 1.42 0.60 0.71 0.55 0.53

Q0.025(θ2|y) 0.07 0.14 0.42 0.65 1.01 0.24

Q0.975(θ1|y) 0.21 3.34 0.50 0.66 0.51 0.55

Q0.975(θ2|y) 0.13 0.71 0.20 0.20 0.37 0.16

Table S1: Comparison of normalized mean absolute errors (NMAE) of estimated quantities of interest obtained with

ABC-RF and other ABC methodologies. RF, Reject, ALL, ARR, ANN and py-SMC-1 stand for random forest (ABC-

RF), rejection, adjusted local linear, adjusted ridge regression, adjusted neural network methods and ABC-SMC with

adaptive population size from [5], respectively. The smallest NMAE values are in by bold characters.
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Figure S4: Boxplot comparison of the differences between our predictions for Var(θ1 | y) and Var(θ2 | y) and the

corresponding true values, using ABC-RF and other ABC methods. RF, ALL, ARR and ANN notations as in the

legend of Table S1). py-SMC-1 refers to the adaptive ABC-SMC algorithm of [5] with the same tuning parameters as

in Table S1. The closer to the y = 0 axis, the better the predictions. Boxplots above this axis imply overestimation of

the predictions and below underestimation.
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RF a-PMC-1 a-PMC-2 PMC-1 PMC-2 SMC-1 SMC-2 py-PMC-1 py-PMC-2 py-SMC-1 py-SMC-2

E(θ1 | y) 0.18 0.54 0.34 0.48 0.67 0.45 0.49 0.38 0.32 0.23 0.26

E(θ2 | y) 0.10 0.15 0.13 0.17 0.17 0.16 0.15 0.13 0.12 0.11 0.11

Var(θ1 | y) 0.30 3.85 2.23 3.28 2.65 3.32 1.93 2.30 2.36 0.96 1.41

Var(θ2 | y) 0.38 0.55 0.42 0.73 0.65 0.71 0.42 0.47 0.39 0.49 0.42

Q0.025(θ1|y) 0.31 2.45 1.37 2.18 1.12 2.07 1.26 1.11 1.54 0.53 0.71

Q0.025(θ2|y) 0.07 0.17 0.15 0.16 0.29 0.15 0.17 0.23 0.18 0.24 0.19

Q0.975(θ1|y) 0.21 2.08 1.29 1.63 0.85 1.73 1.08 1.29 1.41 0.55 0.69

Q0.975(θ2|y) 0.13 0.18 0.15 0.19 0.24 0.24 0.19 0.18 0.13 0.16 0.13

Table S2: Comparison of Normalized Mean Absolute Errors (NMAE) obtained with ABC-RF, adaptive ABC-PMC

and sequential ABC methods for various tuning parameters based on 100 test datasets. RF stands for the ABC-RF

scheme on a reference table of size 104. a-PMC-1 and a-PMC-2 stand for two designs of the adaptive ABC-PMC

method of [10] (Algorithm 5) with 2000 simulated particles per iteration, 1000 accepted particles, schemes iterate

until we get approximately 104 (a-PMC-1) and 105 (a-PMC-2) simulated particles, respectively. PMC-1 and PMC-

2 stand for two designs of the sequential ABC-PMC algorithm of [1]: PMC-1 and PMC-2 include 1000 and 100

simulated particles per iteration, 100 and 10 accepted particles during 10 and 100 iterations, respectively. For PMC-

1 and PMC-2, we simulate 104 particles. SMC-1 and SMC-2 stand for two designs of the sequential ABC-SMC

algorithm of [4]. Both SMC-1 and SMC-2 include 1000 simulated particles per iteration and a stopping rule based

on two pre-computed quantiles of the distances between the observed summary statistics and simulated ones. For

SMC-1, we use a quantile of 10% and for SMC-2 a quantile of 1%. We also use the pyABC python module [6] to

mimic the PMC algorithm as well as a full adaptive SMC method described in [5]. The main drawback of this module

is the absence of a stopping rule concerning the maximal number of simulations, thus the total number of simulations

is higher than 10000 (number of simulations used for ABC-RF). py-PMC-1 and py-PMC-2 is a PMC adaptation

obtained thanks to this module, using respectively 100 and 1000 accepted particles per iteration and a stopping rule

based on a 1% pre-computed quantile of the distances between observed and simulated data, (22000 and 133000

simulations are respectively needed in average). py-SMC-1 and py-SMC-2 designate the pyABC all adaptive version

of ABC-SMC, including an adaptive population size, with a target density variation parameter respectively equal to

0.15 and 0.1 (see [5] for more details), and with 7 and 5 maximal iterations as stopping rule.
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RF a-PMC-1 a-PMC-2 PMC-1 PMC-2 SMC-1 SMC-2 py-PMC-1 py-PMC-2 py-SMC-1 py-SMC-2

E(θ1 | y) 0.14 0.83 0.68 0.75 1.13 0.78 0.95 0.68 0.58 0.38 0.42

E(θ2 | y) 0.10 0.21 0.19 0.20 0.24 0.20 0.19 0.15 0.14 0.12 0.13

Var(θ1 | y) 0.30 6.87 5.77 5.64 5.74 5.23 3.45 4.26 4.69 2.59 3.16

Var(θ2 | y) 0.44 0.93 0.74 1.03 0.84 0.75 0.56 0.40 0.32 0.39 0.31

Q0.025(θ1|y) 0.29 4.12 3.48 3.73 2.75 3.33 2.30 2.34 2.83 1.64 1.88

Q0.025(θ2|y) 0.06 0.22 0.21 0.20 0.32 0.20 0.21 0.17 0.14 0.15 0.15

Q0.975(θ1|y) 0.24 3.22 2.87 2.61 1.67 2.71 1.81 2.33 2.42 1.48 1.74

Q0.975(θ2|y) 0.14 0.28 0.23 0.25 0.23 0.24 0.21 0.18 0.15 0.17 0.15

Table S3: Same as in Table S2, except that 500 independent noise summary statistics were added as explanatory

variables instead of 50. Noise variables were simulated by randomly drawing into uniform distributions on [0,1].

There are thus 11+500 = 511 summary statistics in total (versus 61 summary statistics in Table S2).

We provide further comparisons obtained using ABC-RF, adaptive ABC-PMC and sequential ABC methods for

various tuning parameters (Tables S2 and S3). We considered two different situations by including 50 (Table S2) or

500 (Table S3) noise variables (drawn into uniform distributions on [0, 1]) as explanatory variables. We found that

the ABC-RF algorithm outperforms all adaptive and sequential methods (and designs) considered, and this adding or

not an high amount of noise variables. Note that, in contrast to other methods, ABC-RF was only weakly affected by

the presence of a large number of noise variables.
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Details on tuning parameters used for ABC sequential methods:

• For all non-adaptive ABC methods, we use an Euclidean distance normalised by the MAD calculated on a

precomputed reference table of size 10000. For adaptive methods, a similar distance is used where the stan-

dardisation is performed with iteratively updated MAD values.

• Concerning the transition kernel, a Gaussian distribution is considered. The variance-covariance matrix is

taken as the weighted empirical one computed on the accepted parameters of the previous algorithm iteration,

multiplied by 2 for the methods we implemented (a-PMC, PMC and SMC) and multiplied by a scaling factor

involving the Silverman’s rule of thumb (see [5] and [6] for more details) for the remaining ones using pyABC.

• For the ABC-SMC algorithm [4], we do not change the tuning parameters described in the original paper (i.e.

α = 0.90, NT = N/2 where N is the population size.)

• The adaptive ABC-SMC algorithm of [10] requires a value (also denoted α) indicating the proportion of ac-

cepted simulations per iteration, here chosen at 0.5.

• To mimic the ABC-PMC strategy we use pyABC with an adaptive threshold equal to the median of the previous

iteration’s distances, with a constant population size (100 or 1000) and with a minimum threshold value equal

to the 1% quantile of a precomputed reference table of size 10000.

• Finally, for the full adaptive method of [5], we use an adaptive population size depending on a desired target

density variation value (Ecv) equal to 0.15 or 0.1 in our experimentations and an initial population size equal

to 1000. Note that the default value 0.05 induced a change in the population size from 1000 to 10000 in only

one iteration, hence that is not relevant in our comparison with ABC-RF due to its high simulation cost. The

threshold is taken as the median of the previous iteration’s distances (as in [5]). We do not use a minimum

threshold value but a maximal number of iteration equal to 7 and 5 respectively. Note that this method requires

about 24000 and 28000 simulations when 50 noise summary statistics are considered, and about 40000 and

41000 when 500 is added.
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2 Comparing three methods of variance estimation of parameters

We here compare three methods to estimate posterior variance of a parameter transformation of interest τ using ABC-

RF. Two of them have already been explained in the main text (i.e. method 1 and 3 below).

• Method 1: One reuses the original random forest (RF) weights wt(η(y)) to the out-of-bag square residuals

(τ(t)− τ̂
(t)
oob)

2, giving the variance estimator

Ṽar(τ | η(y)) =
N

∑
t=1

wt(η(y))(τ(t)− τ̂
(t)
oob)

2.

• Method 2: A similar estimator can be obtained by building a new RF thanks to the training sample

(η(y(t)),
(
τ(t)− τoob)

2
)

t=1,...,N , resulting in the estimator

Var#(τ | η(y)) =
N

∑
t=1

w̃t(η(y))(τ(t)− τ̂
(t)
oob)

2,

where w̃t(η(y)) is the computed weights of this newly trained RF. This estimator is based on the expression of

the posterior variance as a conditional expectation:

Var(τ | η(y)) = E
(
[τ−E(τ | η(y))]2 | η(y)

)
and the fact that such a RF is able to estimate this posterior expectation. This approach is more expensive due

to the additional RF requirement.

• Method 3: The variance estimator is based on the cumulative distribution function (cdf) approximation,

V̂ar(τ | η(y)) =
N

∑
t=1

wt(η(y))

(
τ
(t)−

N

∑
u=1

wu(η(y))τ(u)

)2

.

We here compare these three estimators on the Normal toy example detailed above with h the projection on both

coordinates of the parameter vector θ (see Section 1 of the supplementary material). We find that the three estimators

behave similarly; boxplots are alike and all tend to overestimate posterior variances (Figure S5). Results summarized

in Table S4 also supports this similarity in NMAE terms. Because the estimator 1 appears to show slightly lower

errors for both parameter θ1 and θ2, we decided to use it in the two examples detailed in the main text.
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Figure S5: Boxplot comparison of differences between our predictions for Var(θi | y) and the true values with the three

methods of variance estimation: by reusing weights (method 1, boxplot 1), by building a new RF on square residuals

(method 2, boxplot 2) and by using the estimation of the cumulative distribution function (method 3, boxplot 3).

Method 1 2 3

Var(θ1 | y) 0.30 0.35 0.39

Var(θ2 | y) 0.38 0.63 0.37

Table S4: Comparison of normalized mean absolute errors (NMAE) of estimate variances when using three methods,

(see legend of Figure S5 and Section 2 of the supplementary material). The smallest NMAE values are in bold

characters.
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3 Study of covariances of parameters using random forests

3.1 Methodology

We are here interested in another estimate that is frequently produced in a Bayesian analysis, that is the posterior

covariance between two univariate transforms of the parameter, τ = h(θ) and σ = g(θ) say, Cov(τ,σ | η(y)). Since

we cannot derive this quantity from the approximations to the marginal posteriors of τ and σ , we propose to construct

a specific RF for this purpose. With the same notations used in the main text, we denote approximations of posterior

expectations for τ and σ , produced by out-of-bag informations, by τ̂
(t)
oob and σ̂

(t)
oob. We use the product of out-of-bag

errors for τ and σ in the empirical covariance, and consider (τ(t)− τ̂
(t)
oob)(σ

(t)− σ̂
(t)
oob) as the response variable. With

the previously introduced notations, the corresponding RF estimator is

C̃ov(τ,σ | η(y)) =
1
B

B

∑
b=1

1∣∣Lb(η(y))
∣∣ ∑

t:η(y(t))∈Lb

n(t)b (τ(t)− τ̂
(t)
oob)(σ

(t)− σ̂
(t)
oob).

This posterior covariance approximation requires a total of three regression RFs: one for each parameters and one for

the covariance approximation.

3.2 Toy regression example

We now apply our RF methodology to a toy regression example for which its non-zero covariance between parameters

is the main quantity of interest, hence we consider the case were g and h are the projections on a given coordinate of

the parameter vector θ . For a simulated n×2 design matrix X = [x1,x2], we consider the Zellner’s hierarchical model

[7, chapter 3]

(y1, . . . ,yn) | β1,β2,σ
2 ∼Nn(Xβ ,σ2Id),

β1,β2 | σ2 ∼N2(0,nσ
2(X>X)−1),

σ
2 ∼ IG (4,3),

where Nk (µ,Σ) denotes the multivariate normal distribution of dimension k with mean vector µ and covariance

matrix Σ, and IG (κ,λ ) an inverse Gamma distribution with shape parameter κ and scale parameter λ . Provided X>X

is invertible, this conjugate model leads to closed-form marginal posteriors [7]

β1,β2 | y∼T2

(
n

n+1
(X>X)−1X>y,

3+ y>(Id−X(X>X)−1X>)y/2
4+n/2

n
n+1

(X>X)−1,8+n
)
,

σ
2 | y∼ IG

(
4+

n
2
,3+

1
2

y>(Id−X(X>X)−1X>)y
)
,

14



where Tk (µ,Σ,ν) is the multivariate Student distribution of dimension k, with location parameter µ , scale matrix Σ

and degree of freedom ν .

In our simulation experiment, we concentrate on the non zero covariance of the posterior distribution namely

Cov(β1,β2 | y). A reference table of N = 10000 replicates of a n-sample with n = 100 is generated. We then create

k = 60 summary statistics: the maximum likelihood estimates of β1, β2, the residual sum of squares, the empirical

covariance and correlation between y and x1, covariance and correlation between y and x2, the sample mean, the

sample variance, the sample median, and 50 independent noise variables simulated from a uniform distribution U[0,1].

These noise variables were introduced to be in a sparse context.

Similarly to the Normal example of the main text, we assess the performance of our approach using an independent

(Monte Carlo) test dataset of size Npred = 100 and compare estimation accuracy with the ABC-RF approach from the

ones with adjusted ridge regression and neural network ABC methodologies. RF are once again built with B =

500 trees, ntry = k/3 and minimum node size equals to 5 and ABC methods rely on the R package abc with a

tolerance parameter equals to 0.1 for ABC methods with adjustment. ABC with neural network adjustment require

the specification of the number of layers composing the neural network. We use again 10 layers, the default number

of layers in the R package abc. For local linear or ridge regression the corrections are univariate. That is not the case

for neural networks which, by construction, perform multivariate correction.

Covariance estimation is a novel feature in this example, Table S5 shows that the ABC-RF approach does better

in NMAE terms. As exhibited in Figure S6, ABC-RF overestimates covariances when earlier ABC methods underes-

timate it. Results are quite encouraging even though we believe the method might still be improved.
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RF ARR ANN

Cov(β1,β2 | y) 0.26 0.85 0.64

Table S5: Comparison of normalized mean absolute errors (NMAE) of estimate posterior covariances between β1

and β2 using random forest (RF), adjusted ridge regression (ARR) and adjusted neural network (ANN) ABC methods.

The smallest NMAE value is in bold characters.
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Figure S6: Boxplot comparison of differences between prediction and true values for Cov(β1,β2 | y) using random

forest (RF), adjusted ridge regression (ARR) and adjusted neural network (ANN) ABC methods.

16



4 A basic R code to use the abcrf package version 1.7.1

We provide some basic R lines of code to use the R package abcrf and conduct RF inference about parameters.

There are two possibilities to read simulated data: the user wants to use a reference table simulated from the software

DIYABC v.2.1.0 [3] recorded within a .bin file associated with its .txt header file, or the simulated reference table

is only contained within a .txt file. Of course if the model is simple enough, the user can simulate the reference table

himself using its own simulator program. In the following, we assume θ is a vector of p parameters and k summary

statistics are considered. The # symbol means the text on its right is a comment and ignored by R. We here focus on

a single parameter of interest labelled “poi”.

Installing and loading the R package abcrf

install.packages("abcrf") # To install the abcrf package (version 1.7.1)

library(abcrf) # To load the package.

Reading data: option 1 - using a .bin and .text files obtained using DIYABC

We assume the reference table is recorded within the reftable.bin file and its corresponding header in the

header.txt file. The function readRefTable is used to recover the data.

data <- readRefTable(filename = "reftable.bin", header = "header.txt")

# data is a list containing the scenarios (or models) indices, the matrix

# with the parameters, the summary statistics and other informations.

# We are here interested in the simulated data of the scenario 1.

index1 <- data$scenarios == 1 # To store the model 1 indexes.

# We then create a data frame composed of the parameter of interest poi and

# the summary statistics of the scenario 1.

data.poi <- data.frame(poi = data$params[index1, "poi"],

data$stats[index1, ])
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Reading data: option 2 - using a .txt file

We assume that the reference table is recorded within yourTxtFile.txt file, composed of a first column corre-

sponding to the scenario indices, p columns of parameters and k columns of summary statistics, the first row is the

column labels. The field separator character being a white space.

data <- read.table(file = "youTxtFile.txt", header = TRUE, sep = "")

# data is a matrix. The first column is the model indices, the next p are

# the p parameters, the last k are the summary statistics.

index1 <- data[ , 1] == 1 # To store the model 1 indexes.

# We then create a data frame composed of the parameter of interest poi and

# the summary statistics of model 1. p and k have to be defined.

data.poi <- data.frame(poi = data[index1, "poi"],

data[index1, (p+2):(p+k+1)])

Subsetting your dataset

If required, subsetting your datasets stored in data.poi can be easily done with the following line.

data.poi <- data.poi[1:10000, ]

# If you are interest in the 10000 first datasets.

Training a random forest

The random forest of the ABC-RF method is built thanks to the regAbcrf function, its principle arguments being

a R formula and the corresponding data frame as training dataset. Additional arguments are available, especially

the number of trees (ntree, with default values ntree = 500), the minimum node size (min.node.size, with

default value min.node.size = 5), and the number of covariates randomly considered at each split (mtry). See the

regAbcrf help for further details.
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model.poi <- regAbcrf(formula = poi~., data = data.poi, ntree = 500,

min.node.size = 5, paral = TRUE)

# The used formula means that we are interested in explaining the parameter

# poi thanks to all the remaining columns of data.poi (i.e. all the

# summary statistics).

# The paral argument determine if parallel computing will be activated

# or not.

Graphical representations to access the performance of the method

The evolution of the out-of-bag mean squared error depending on the number of tree can be easily represented with

the err.regAbcrf function (e.g. Figure 6 of the main text).

errorOOB <- err.regAbcrf(object = model.poi, training = data.poi,

paral = TRUE)

The contribution of summary statistics in ABC-RF estimation for the parameter of interest can be retrieved with the

plot function applied to an object resulting from regAbcrf.

plot(x = model.poi, n.var = 25)

# The contributions of the 25 most important summary statistics are

# represented (e.g. Figure S5).

Making predictions

Finally, given a data frame obs.poi containing the summary statistics you want the predictions of posterior quantities

of interest for a given dataset (usually the observed dataset). When using DIYABC, note that the summary statistics

of the observed dataset are recorded in a file name statobs.txt. The predict method can be used for this purpose.

The column names need to be the same than those in the summary statistics of data.poi.

# Reading the observed dataset with

obs.poi <- read.table("statobs.txt", skip=2)

# If obs.poi is not a dataframe or the column names do not match,
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# you can use the following lines:

obs.poi <- as.data.frame(obs.poi)

colnames(obs.poi) <- colnames(data.poi[ ,-1])

# Prediction is complete by

pred.obsPoi <- predict(object = model.poi, obs = obs.poi,

training = data.poi, quantiles = c(0.025,0.975),

paral = TRUE)

# The 2.5 and 97.5 order quantiles are computed by specifying

# quantiles = c(0.025,0.975).

# pred.obsPoi is a list containing predictions of interest.

# Posterior mean can be retrieved by

pred.obsPoi$expectation

# Posterior variance by

pred.obsPoi$variance

# Posterior quantiles by

pred.obsPoi$quantiles

A graphical representation of the approximate posterior density of poi given obs.poi can be obtained using the

densityPlot function.

densityPlot(object = model.poi, obs = obs.poi, training = data.poi, paral = TRUE)

20



5 Summary statistics available in the software DIYABC v.2.1.0 for SNP data

For single nucleotide polymorphic (SNP) markers, the program DIYABC v.2.1.0 [3] proposes a set of summary statis-

tics among those used by population geneticists. These summary statistics are mean values, variance values and

proportion of null values across loci, which allow a rough description of the allelic spectrum. Such summary statistics

characterize a single, a pair or a trio of population samples.

Single population statistics

HP0_i: proportion of monomorphic loci for population i

HM1_i: mean gene diversity across polymorphic loci [9]

HV1_i: variance of gene diversity across polymorphic loci

HMO_i: mean gene diversity across all loci [9]

Two population statistics

FP0_i&j: proportion of loci with null FST distance between the two samples for populations i and j [12]

FM1_i&j: mean across loci of non null FST distances

FV1_i&j: variance across loci of non null FST distances

FMO_i&j: mean across loci of FST distances [12]

NP0_i&j: proportion of 1 loci with null Nei’s distance [8]

NM1_i&j: mean across loci of non null Nei’s distances

NV1_i&j: variance across loci of non null Nei’s distances

NMO_i&j: mean across loci of Nei’s distances [8]

Three population statistics

AP0_i_j&k: proportion of loci with null admixture estimate when pop. i comes from an admixture between j and k

AM1_i_j&k: mean across loci of non null admixture estimate

AV1_i_j&k: variance across loci of non null admixture estimated

AMO_i_j&k: mean across all locus admixture estimates [2]
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6 Supplementary figures and tables for the Human population genetics example
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Figure S7: Range and coverage comparison of approximate 95% credible intervals on the ratio N2/Na of the Human

population genetics example, obtained with ABC-RF (RF) and with earlier ABC methods : rejection (Reject), adjusted

local linear (ALL) or ridge regression (ARR) or neural network (ANN) with various tolerance levels for Reject, ALL,

ARR and ANN. Coverages values are specified by bar colors and superimposed values. Heights indicate CI mean

lengths. Na is the ancestral African effective population size before the population size change event and N2 the

African effective population size after the population size change event (going backward in time). RF∗ refers to

results obtained using ABC-RF when adding 20 additional independent noise variables generated from a uniform

U[0,1] distribution. RF refers to results without noise variables.
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Method Tolerance level ra NMAE N2/Na NMAE

RF NA 0.018 0.053

RF∗ NA 0.019 0.053

Reject 0.005 0.151 0.355

Reject 0.01 0.178 0.454

Reject 0.1 0.322 1.223

Reject 0.4 0.574 2.025

Reject 1 0.856 4.108

ALL 0.005 0.028 0.166

ALL 0.01 0.028 0.249

ALL 0.1 0.035 0.139

ALL 0.4 0.044 0.170

ALL 1 0.062 0.209

ARR 0.005 0.027 0.220

ARR 0.01 0.027 0.317

ARR 0.1 0.035 0.140

ARR 0.4 0.044 0.163

ARR 1 − −
ANN 0.005 0.007 0.037
ANN 0.01 0.007 0.038

ANN 0.1 0.013 0.064

ANN 0.4 0.016 0.123

ANN 1 0.025 0.095

Table S6: Comparison of normalized mean absolute errors (NMAE) for the estimation of the parameters ra and N2/Na

using ABC-RF (RF) and ABC with rejection (Reject), adjusted local linear (ALL) or ridge regression (ARR) or neural

network (ANN) with various tolerance levels for Reject, ALL, ARR and ANN. NA stands for not appropriate. The

smallest NMAE values are in by bold characters. NA stands for not appropriate. RF∗ refers to results obtained using

ABC-RF when adding 20 additional independent noise variables generated from a uniform U[0,1] distribution. RF

refers to results without noise variables.
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ra

Method Tol. level Expectation Q0.025 Q0.05 Q0.95 Q0.975

RF NA 0.221 0.112 0.134 0.279 0.287

RF∗ NA 0.225 0.112 0.142 0.282 0.290

Reject 0.005 0.223 0.061 0.069 0.364 0.389

Reject 0.01 0.220 0.060 0.070 0.389 0.418

Reject 0.1 0.276 0.062 0.074 0.511 0.543

Reject 0.4 0.388 0.068 0.086 0.739 0.791

Reject 1 0.502 0.073 0.095 0.906 0.928

ALL 0.005 0.278 0.219 0.229 0.322 0.337

ALL 0.01 0.257 0.232 0.238 0.274 0.278

ALL 0.1 0.207 0.170 0.171 0.233 0.237

ALL 0.4 0.194 0.144 0.152 0.233 0.241

ALL 1 0.196 0.115 0.126 0.278 0.299

ARR 0.005 0.260 0.252 0.254 0.265 0.266

ARR 0.01 0.252 0.239 0.242 0.260 0.262

ARR 0.1 0.211 0.171 0.178 0.239 0.244

ARR 0.4 0.196 0.140 0.149 0.241 0.251

ARR 1 − − − − −
ANN 0.005 0.227 0.221 0.223 0.232 0.234

ANN 0.01 0.226 0.219 0.221 0.231 0.233

ANN 0.1 0.228 0.217 0.220 0.236 0.239

ANN 0.4 0.232 0.216 0.221 0.242 0.248

ANN 1 0.206 0.183 0.187 0.227 0.233

Table S7: Estimation of the parameter ra and N2/Na for the observed human population genetics dataset using ABC-

RF (RF), and ABC with rejection (Reject), adjusted local linear (ALL) or ridge regression (ARR) or neural network

(ANN) with various tolerance levels (Tol. level) for Reject, ALL, ARR and ANN. NA stands for not appropriate.

RF∗ refers to results obtained using ABC-RF when adding 20 additional independent noise variables generated from

a uniform U[0,1] distribution. RF refers to results without noise variables.
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N2/Na

Method Tol. level Expectation Q0.025 Q0.05 Q0.95 Q0.975

RF NA 4.508 3.831 3.959 5.153 5.424

RF∗ NA 4.594 3.821 3.910 5.241 6.552

Reject 0.005 6.282 2.937 3.223 10.086 11.337

Reject 0.01 6.542 2.746 3.116 10.837 11.852

Reject 0.1 8.001 2.131 2.574 15.690 18.531

Reject 0.4 11.605 1.795 2.331 28.011 38.532

Reject 1 23.483 0.672 1.185 84.649 147.657

ALL 0.005 30.041 1.256 1.879 83.369 174.340

ALL 0.01 9.289 3.946 4.586 16.686 20.361

ALL 0.1 8.235 5.736 5.995 11.573 12.719

ALL 0.4 10.752 4.588 4.996 21.656 27.300

ALL 1 7.222 5.684 5.829 9.631 10.475

ARR 0.005 10.528 4.395 5.677 19.224 22.722

ARR 0.01 8.264 5.020 5.485 12.544 13.313

ARR 0.1 8.394 5.643 5.948 12.075 13.313

ARR 0.4 10.802 6.113 6.505 17.487 20.511

ARR 1 − − − − −
ANN 0.005 5.746 5.512 5.563 5.937 5.982

ANN 0.01 6.148 5.883 5.934 6.353 6.420

ANN 0.1 25.921 23.857 24.250 27.672 28.133

ANN 0.4 8.515 7.652 7.810 9.147 9.436

ANN 1 7.021 5.692 5.856 8.677 9.370

Table S8: Same as table S7 for the parameter N2/Na.
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7 Supplementary tables and a figure about practical recommendations regarding
the implementation of the ABC-RF algorithm

NMAE

N (×103) 10 25 50 75 100 150 199

ra 0.028 0.023 0.021 0.020 0.019 0.018 0.018

N2/Na 0.080 0.067 0.059 0.057 0.055 0.053 0.053

OOB MSE

N (×103) 10 25 50 75 100 150 199

ra (×10−4) 1.670 1.176 0.914 0.823 0.745 0.695 0.664

N2/Na (×103) 0.194 0.179 0.143 0.125 0.115 0.111 0.110

Table S9: Comparison of normalized mean absolute errors (NMAE) and out-of-bag mean squared errors (OOB MSE)

for the estimation of the parameters ra and N2/Na obtained with ABC-RF, using different reference table sizes (N).

We use the test table mentioned in subsection 3.2 of the main text. The number of trees in the RF is 500.

N (×103) 10 25 50 75 100 150 199

ra expectation 0.231 0.222 0.224 0.223 0.222 0.223 0.221

ra Q0.025 0.097 0.095 0.102 0.104 0.106 0.109 0.112

ra Q0.975 0.317 0.309 0.305 0.305 0.289 0.292 0.287

N2/Na expectation 4.538 4.588 4.652 4.530 4.475 4.483 4.508

N2/Na Q0.025 3.651 3.679 3.782 3.802 3.751 3.840 3.831

N2/Na Q0.975 6.621 6.221 6.621 5.611 5.555 5.315 5.424

Table S10: Estimation of the parameters ra and N2/Na for the observed population genetics dataset with ABC-RF,

using different reference table sizes (N). The number of trees in the RF is 500.
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NMAE

Nmin 1 2 3 4 5 10 20 50 100 200 500

ra 0.019 0.019 0.019 0.019 0.019 0.019 0.020 0.021 0.023 0.027 0.033

N2/Na 0.054 0.055 0.054 0.055 0.055 0.055 0.055 0.058 0.062 0.068 0.082

OOB MSE

Nmin 1 2 3 4 5 10 20 50 100 200 500

ra (×10−4) 0.745 0.739 0.744 0.739 0.745 0.760 0.783 0.925 1.129 1.480 2.280

N2/Na (×103) 0.114 0.116 0.115 0.115 0.115 0.116 0.119 0.131 0.153 0.183 0.252

Table S11: Comparison of normalized mean absolute errors (NMAE) and out-of-bag mean squared errors (OOB

MSE) for the estimation of the parameters ra and N2/Na obtained with ABC-RF, using different minimum node sizes

(Nmin). We use the reference table of size N = 100000 and the test table mentioned in subsection 3.2 of the main text.

The number of trees in the RF is 500.
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Figure S8: Relations between the number of trees in the forest and the ABC-RF out-of-bag mean squared errors, for

a reference table of size N = 100000 in the human population genetics example.

27



8 Contribution of summary statistics in ABC-RF estimation of the parameters ra
and N2/Na of the Human population genetics example

In the same spirit than in Pudlo et al. [11], a by-product of our ABC-RF-based approach is to automatically determine

the (most) relevant statistics for the estimation of each parameter by computing a criterion of variable importance (here

a variable is a summary statistic). For a summary statistic j, this measure is equal to the total amount of decrease of

the residual sum of squares (RSS) due to splits over this given summary statistic, divided by the number of trees.

Indeed, at a given parent node where j is used, with n datasets, and for a given parameter of interest τ , the decrease

of the RSS due to the split event is defined by the formula

n

∑
i=1

(τi− τ̄)2−

(
∑

i∈ left node
(τi− τ̄L)

2 + ∑
i∈ right node

(τi− τ̄R)
2

)
,

where τ̄ , τ̄L and τ̄R are respectively the average of parameter values of the datasets in the parent node, left daughter

and right daughter nodes. Computing this decrease among all nodes where a summary statistics j is used, among all

the trees of the forest and dividing it by the number of trees is an importance measurement of the covariate j.

Figure S9 shows the contributions of the 30 most important summary statistics (among the 112 statistics proposed

by DIYABC) for the ABC-RF estimation of the parameters ra and N2/Na of the Human population genetics example

(see Section 3.1 of the main text). The most informative summary statistics are clearly different depending on the

parameter of interest. For the admixture rate between two sources populations (ra), all ten most informative statistics

correspond to statistics characterizing a pair or a trio of populations (e.g. AV or FMO statistics; see Section 5 of the

supplementary materials). Moreover, all those “best” statistics include the populations ASW, GBP and YRI which

correspond to the target and the two source populations respectively. On the contrary, for the effective population size

ratio N2/Na, seven of the ten most most informative statistics correspond to statistics characterizing within population

genetic variation (e.g. HV or HMO; see Section 5 of the supplementary materials). In this case, all those “best”

statistics include the African population, which makes sense since N2 is the effective population size in the studied

African population and Na in the population ancestral to all studied populations. It is worth stressing that, although the

most informative summary statistics make sense in relation to the studied parameters it was difficult if not impossible

to a priori and objectively select those statistics. This is not an issue when using the ABC-RF approach as the method

automatically extracts the maximum of information from the entire set of proposed statistics.
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Figure S9: Contributions of the 30 most important summary statistics for the ABC-RF estimation of the parameters

ra and N2/Na of the Human population genetics example. The contribution of each statistics is evaluated as the

total amount of decrease of the residual sum of squares, divided by the number of trees, for each of the 112 used

summary statistics provided for SNP markers by DIYABC. The higher the variable importance the more informative

the statistics. The population index(s) is indicated at the end of each statistics. 1 = pop ASW (Americans of African

ancestry), 2 = pop YRI (Yoruba, Africa), 3 = pop CHB (Han, Asia) and 4 = pop GBP (British, Europe). For

instance FMO 1&4 = mean across loci of Fst distance between the populations 1 and 4. See also Section 5 of the

supplementary materials and the Figure 4 of the main text. Note the difference of scale for the importance criterion

for parameters ra and N2/Na. This difference can be explained by the difference of scale in parameter values. Indeed,

it directly influences the RSS. The parameter ra being bounded in [0,1] contrary to N2/Na, a higher decrease can be

expected for the ratio N2/Na than ra.
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9 Computation times required by the statistical treatments of the studied methods
processed following the generation of the reference table

We here present a comparison of the computation time requirement for the different methods studied in this paper,

when predicting estimations of the admixture rate ra in the human population genetics example. ABC methods

with rejection or adjusted with local linear regression provide the best results in terms of CPU time even when the

tolerance level is equal to 1. The ABC-RF strategy requires moderately higher computing time. The calculation of

the RF weights is the most expensive computation part (i.e. 3/4 of computation time). ABC methods using ridge

regression or neural network correction become very time consuming when the tolerance level is high.

Method Tol. level CPU time (in minutes)
RF NA 16.64
Reject 0.005 7.54
Reject 0.01 7.54
Reject 0.1 7.78
Reject 0.4 7.98
Reject 1 9.14
ALL 0.005 7.66
ALL 0.01 7.70
ALL 0.1 8.81
ALL 0.4 9.21
ALL 1 11.32
ARR 0.005 6.71
ARR 0.01 6.97
ARR 0.1 40.57
ARR 0.4 560.39
ARR 1 −
ANN 0.005 22.31
ANN 0.01 33.60
ANN 0.1 216.61
ANN 0.4 1160.67
ANN 1 4028.63

Table S12: Comparison of the computation time (in minutes) required - after the generation of the reference table - for

the estimation of the parameter of interest ra on a dataset test table, using ABC-RF (RF), ABC with rejection (Reject),

adjusted local linear (ALL), ridge regression (ARR) and neural network (ANN), with various tolerance levels for

Reject, ALL, ARR and ANN. The test table included 1000 pseudo-observed datasets and the reference table included

199000 simulated datasets summarized with 112 statistics. Results were computed on a cluster with 28 CPU cores of

2.4 GHz. NA stands for not appropriate.
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