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Abstract

Motivation: Approximate Bayesian computation (ABC) has grown into a standard methodology that
manages Bayesian inference for models associated with intractable likelihood functions. Most ABC
implementations require the preliminary selection of a vector of informative statistics summarizing raw
data. Furthermore, in almost all existing implementations, the tolerance level that separates acceptance
from rejection of simulated parameter values needs to be calibrated.
Results: We propose to conduct likelihood-free Bayesian inferences about parameters with no prior
selection of the relevant components of the summary statistics and bypassing the derivation of the
associated tolerance level. The approach relies on the random forest methodology of Breiman (2001)
applied in a (non parametric) regression setting. We advocate the derivation of a new random forest
for each component of the parameter vector of interest. When compared with earlier ABC solutions,
this method offers significant gains in terms of robustness to the choice of the summary statistics, does
not depend on any type of tolerance level, and is a good trade-off in term of quality of point estimator
precision and credible interval estimations for a given computing time. We illustrate the performance of
our methodological proposal and compare it with earlier ABC methods on a Normal toy example and a
population genetics example dealing with human population evolution.
Availability and implementation: All methods designed here have been incorporated in the R package
abcrf (version 1.7.1) available on CRAN.
Contacts: louis.raynal@umontpellier.fr, jean-michel.marin@umontpellier.fr
Supplementary Information: Supplementary data are available at Bioinformatics online.

1 Introduction
As statistical models and data structures get increasingly complex,
managing the likelihood function becomes a more and more frequent issue.
We now face many realistic fully parametric situations where the likelihood
function cannot be computed in a reasonable time or simply is unavailable.
As a result, while the corresponding parametric model is well-defined, with
unknown parameter θ , standard solutions based on the density function
f (y | θ) like Bayesian or maximum likelihood analyses are prohibitive to
implement. To bypass this hurdle, the last decades witnessed different

inferential strategies, among which composite likelihoods (Lindsay,
1988; Varin et al., 2011), indirect inference (Gourieroux et al., 1993)
and likelihood-free methods such as approximate Bayesian computation
(ABC, Beaumont et al., 2002; Csilléry et al., 2010; Marin et al., 2012),
became popular options. We focus here on improving the latter solution.

Since their introduction in population genetics (Tavaré et al., 1997;
Pritchard et al., 1999; Beaumont et al., 2002), ABC methods have been
used in an ever increasing range of applications, corresponding to different
types of complex models in diverse scientific fields (see, e.g., Beaumont,
2008; Toni et al., 2009; Beaumont, 2010; Csilléry et al., 2010; Theunert
et al., 2012; Chan et al., 2014; Arenas et al., 2015; Sisson et al., 2018).
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2 L.Raynal et al.

Posterior distributions are the cornerstone of any Bayesian analysis
as they constitute both a sufficient summary of the data and a means to
deliver all aspects of inference, from point estimators to predictions and
uncertainty quantification. However, it is rather common that practitioners
and users of Bayesian inference are not directly interested in the posterior
distribution per se, but rather in some summary aspects, like posterior
mean, posterior variance or posterior quantiles, since these are easier to
interpret and report. With this motivation, we consider a version of ABC
focussing on the approximation of unidimensional transforms of interest
like the above, instead of resorting to the classical ABC approach that
aims at approximating the entire posterior distribution and then handling
it as in regular Bayesian inference. The approach we study here is based
on random forests (RF, Breiman, 2001), which produces non-parametric
regressions on an arbitrary set of potential regressors. We recall that the
calibration side of RF (i.e. the choice of the RF parameters: typically the
number of trees and the number of summary statistics sampled at each
node) was successfully exploited in Pudlo et al. (2016) for conducting
ABC model choice.

After exposing the ABC and RF principles, we explain how to fuse both
methodologies towards Bayesian inference about parameters of interest.
We then illustrate the performance of our proposal and compare it with
earlier ABC methods on a Normal toy example and a population genetics
example dealing with human population evolution.

2 Methods
Let { f (y | θ) : y∈Y ,θ ∈Θ} , Y ⊆Rn , Θ⊆Rp , p,n≥ 1 be a parametric
statistical model and π(θ) be a prior distribution on the parameter θ . Given
an observation (or sample) y issued from this model, Bayesian parameter
inference is based on the posterior distribution π(θ | y)∝ π(θ) f (y|θ). The
computational difficulty addressed by ABC techniques is that a numerical
evaluation of the density (a.k.a., likelihood) f (y | θ) is impossible or at
least very costly, hence preventing the derivation of the posterior π(θ | y),
even by techniques like MCMC (Marin and Robert, 2014).

2.1 ABC for parameter inference

The principle at the core of ABC is to approximate traditional Bayesian
inference from a given dataset by simulations from the prior distribution.
The simulated values are accepted or rejected according to the degree
of proximity between the observed dataset y and a simulated one y(θ)
thanks to a (usually normalized Euclidean) distance d. ABC relies on
the operational assumptions that, while the likelihood is intractable,
observations can be generated from the statistical model f (· | θ) under
consideration for a given value of the parameter θ .

The ABC resolution of the intractability issue with the likelihood is to
produce a so-called reference table, recording a large number of datasets
simulated from the prior predictive distribution, with density f (y | θ)×
π(θ), and then extracting those that bring the simulations close enough to
the actual sample. In most ABC implementations, for both computational
and statistical efficiency reasons, the simulated y(t)’s (t = 1, . . . ,N) are
summarized through a dimension-reduction function η : Y → Rk , often
called a vector of k summary statistics. While the outcome of the ABC
algorithm is then an approximation to the posterior distribution of θ given
η(y), rather than given the entire data y (Marin et al., 2012), arguments
are to be found in the literature supporting the (ideal) choice of a summary
statistic η of the same dimension as the parameter (Fearnhead and Prangle,
2012; Li and Fearnhead, 2015; Frazier et al., 2017). Algorithm 1 details
how the reference table is constructed. The reference table will latter be
used as a training dataset for the different RF methods explained below.

In practice, a reference table of size N is simulated, distances(
d(η(y),η(y(t)))

)
t=1,...,N are computed and then given a tolerance

proportion 0 < pε ≤ 1, pairs (θ (t),η(y(t))) within the pε range of lowest

distances are selected. The parameter sample thus derived is deemed to
approximate the posterior distribution π(θ | η(y)).

Algorithm 1: Generation of a reference table from the prior
predictive distribution π(θ) f (y | θ)

for t← 1 to N do
Simulate θ (t) ∼ π(θ);

Simulate y(t) = (y(t)1 , . . . ,y(t)n )∼ f
(

y | θ (t)
)

;

Compute η(y(t)) = {η1(y(t)), . . . ,ηk(y(t))};
end

The method is asymptotically consistent in the sense that the true
parameter behind the data can be exhibited when both the sample size and
the number of simulations grow to infinity and the tolerance decreases
to zero (Frazier et al., 2017). However, it suffers from two major
drawbacks. First, to ensure a sufficient degree of reliability, the number
N of simulations must be quite large, even if some new sequential ABC
scheme provides interesting improvements in that respect (Prangle, 2017;
Klinger and Hasenauer, 2017; Klinger et al., 2018). Hence, it may prove
difficult to apply ABC on large or complex datasets since producing
data may prove extremely costly. Second, the calibration of the ABC
algorithm (i.e. a tolerance level indicating the separation of accepted from
rejected simulated parameter values) is a critical step and impacts the
resulting approximation (Marin et al., 2012; Blum et al., 2013). Since
the justification of the method is doubly asymptotic, it is delicate if not
impossible (Li and Fearnhead, 2015; Frazier et al., 2017) to optimally tune
ABC for finite sample sizes. A third feature of major importance in this
algorithm is that it requires selecting a vector of summary statistics that
captures enough information from the observed and simulated data. For
most problems, using the raw data to compare datasets is indeed impossible
due to their high dimension. Fearnhead and Prangle (2012) give a natural
interpretation of the vector of summary statistics as an estimator of θ , but
this puts a clear restriction on the dimension and nature of the components
of η(y).

It is worth noting that the original rejection ABC method, which can
be interpreted as a K-nearest neighbour method, has been recurrently
improved by linear or non-linear regression strategies, mentioned in
literature as adjusted local linear (Beaumont et al., 2002), ridge regression
(Blum et al., 2013), and by methods based on adjusted neural networks
(Blum and François, 2010). Instead of ridge regularization within
local linear adjustment, Saulnier et al. (2017) propose to use a lasso
regularization in order to select among the summary statistics. The
obtained results are promising excepted when the summary statistics are
highly correlated. In such cases, Saulnier et al. (2017) suggest to use
random forests. We will only consider ridge regularization in the present
work. Finally, additional methods have been developed to exploit the
information of already accepted parameter values, by sampling according
to a sequential Monte-Carlo based simulation approach (ABC-SMC,
Sisson et al., 2007, 2009; Del Moral et al., 2012; Klinger and Hasenauer,
2017; Klinger et al., 2018), or from an importance sampling perspective
(ABC-PMC, Beaumont et al., 2009; Prangle, 2017). Such methods make
use of a sequence of simulated datasets and include Markov transition
kernels as well as importance weights for accepted datasets.

2.2 Random forest methodology

The random forest methodology (RF) of Breiman (2001) is pivotal in our
proposal. We use Breiman’s RF in a regression setting where a response
variable Y ∈R is explained by a vector of covariates X = (X (1), . . . ,X (k)).
A collection of N datasets, made of responses and associated covariates,
is used to train a RF.
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ABC-RF parameter inference 3

A given regression RF of size B is composed of B regression trees.
A tree is a structure made of binary nodes, which are iteratively built
from top to bottom until a stopping rule is satisfied. There are two types
of nodes in such trees, the internal and terminal nodes, the latter being
also called leaves. At an internal node, a binary rule of the form X ( j) ≤ s
versus X ( j) > s compares a covariate X ( j) with a bound s. The result of the
test divides the predictor space and the training dataset depending on this
splitting rule into two parts in two new different nodes. When constructing
the tree based on a training sample, the covariate index j and the splitting
bound s are determined towards minimising a L2-loss criterion. The same
covariate may be used multiple times for the choice of j at different levels
of the tree construction. Splitting events stop when all the observations
of the training dataset in a given node have the same covariate values,
in which case the node becomes a leaf. Moreover, when a node has less
than Nmin observations, the node also becomes a leaf, typically Nmin = 5
in the regression framework. Once the tree construction is complete, a
value of the response variable is allocated to each tree leaf, corresponding
to the average of the response values of the present datasets. For a given
and an observed dataset that corresponds to a new covariate X, predicting
the associated value of Y implies following the path of the binary rules.
The outcome of the prediction is the allocated value of the leaf where this
dataset ends after following this path.

The RF method consists in aggregating (or bagging) randomized
regression trees. A large number of trees are trained on bootstrap samples
of the training dataset and furthermore a subset of ntry covariates among the
k available covariates are randomly considered at each split. The predicted
value of a regression RF is determined by averaging the B predictions over
its B tree components.

2.3 ABC parameter inference using random forest

2.3.1 Motivations and main principles
The particular choice of RF as a (non-parametric) estimation method in a
regression setting is justified by the robustness of both random forests and
quantile methods to “noise", that is, to the presence of irrelevant predictors,
even when the proportion of such covariates amongst the entire set of
proposed predictors is substantial (Marin et al., 2018). By comparison,
the method of K-nearest neighbour classifiers lacks such characteristics
(Biau et al., 2015). In the setting of building an ABC algorithm without
preliminary selection of some summary statistics, our conjecture is that
RF allows for the inclusion of an arbitrary and potentially large number of
summary statistics in the derivation of the forest and therefore that it does
not require the usual preliminary selection of summary statistics. When
implementing this approach, we hence bypass the selection of summary
statistics and include a large collection of summary statistics, some or
many of which being potentially poorly informative if not irrelevant for
the regression. For earlier considerations on the selection of summary
statistics, see Joyce and Marjoram (2008); Nunes and Balding (2010);
Jung and Marjoram (2011); Fearnhead and Prangle (2012) and the review
paper of Blum et al. (2013) where different dimension reduction techniques
are compared.

A regression RF produces an expected predicted value for an arbitrary
transform of θ , conditional on an observed dataset. This prediction is the
output of a piece-wise constant function of the summary statistics. RF
aggregates trees, partitions the feature space (here the space of summary
statistics) in a way tuned to the forecast of a scalar output, i.e., a one
dimensional functional of the parameter. This partition and prediction are
done without requiring the definition of a particular distance on the feature
space and is hence not dependant of any type of tolerance level. From an
ABC perspective, each tree of a RF provides a partition of the covariate
space, in our case the k-dimensional space of summary statistics, adapted
for the forecasting of the response variable, corresponding to a scalar

transformation h(θ) of the parameter θ . In the following subsection we
present how to compute quantities of interest in a context of parameter
inference, thanks to the calculation of weights.

2.3.2 Calculation of weights and approximation of the posterior
expectation

Assume we have now grown a RF made of B trees that predicts
τ = h(θ) ∈ R using the summarized observed dataset η(y) and the training
sample (η(y(t)),τ(t))t=1,...,N , where τ(t) = h(θ (t)). In the examples below,
we will consider the case where h is the projection on a given coordinate
of θ . To sum up, we are training a RF using simulated datasets from the
reference table, where the covariates are the summary statistics and the
response variable is a unidimensional parameter of interest. Each of these
B trees produces a partition of the space of summary statistics, with a
constant prediction of the expected value of τ on each set of the partition.
More precisely, given b-th tree in the forest, let us denote n(t)b the number
of times the pair (η(y(t)),τ(t)) is repeated in the bootstrap sample that is
used for building the b-th tree. Note that n(t)b is equal to zero when the
pair does not belong to the bootstrap sample. These pairs form the so-
called out-of-bag sample of the b-th tree. Now, let Lb(η(y)) denote the
leaf reached after following the path of binary choices given by the tree,
which depends on the value of η(y). The number of items of the bootstrap
sample that fall in that leaf is

∣∣Lb(η(y))
∣∣= N

∑
t=1

n(t)b 1
{

η(y(t)) ∈ Lb(η(y))
}
,

where 1 denotes the indicator function, and the mean value of τ of that
leaf of the b-th tree is

1∣∣Lb(η(y))
∣∣ N

∑
t=1

n(t)b 1
{

η(y(t)) ∈ Lb(η(y))
}

τ
(t).

Averaging these B predictions of τ leads to an approximation of the
posterior expected value of τ , also denoted mean value of τ , which can be
written as follows:

Ẽ
(
τ
∣∣η(y)

)
=

1
B

N

∑
t=1

B

∑
b=1

1∣∣Lb(η(y))
∣∣n(t)b 1

{
η(y(t)) ∈ Lb(η(y))

}
τ
(t).

As exhibited by Meinshausen (2006), the above can be seen as a weighted
average of τ along the whole training sample of size N made by the
reference table. In fact, the weight of the t-th pair (η(y(t)),τ(t)) given
η(y) is

wt(η(y)) =
1
B

B

∑
b=1

1∣∣Lb(η(y))
∣∣n(t)b 1

{
η(y(t)) ∈ Lb(η(y))

}
.

2.3.3 Approximation of the posterior quantile and variance
The weights wt(η(y)) provide an approximation of the posterior
cumulative distribution function (cdf) of τ given η(y) as

F̃(τ | η(y)) =
N

∑
t=1

wt(η(y))1{τ(t) < τ}.

Posterior quantiles, and hence credible intervals, are then derived by
inverting this empirical cdf, that is by plugging F̃ in the regular quantile
definition

Q̃α{τ | η(y)}= inf
{

τ : F̃(τ | η(y))≥ α

}
.

This derivation of a quantile approximation is implemented in the R
package quantregForest and the consistency of F̃ is established in
Meinshausen (2006).
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4 L.Raynal et al.

An approximation of Var(τ | y) can be derived in a natural way from
F̃ , leading to

V̂ar(τ | η(y)) =
N

∑
t=1

wt(η(y))

(
τ
(t)−

N

∑
u=1

wu(η(y))τ(u)
)2

.

2.3.4 Alternative variance approximation
Regarding the specific case of the posterior variance of τ , we propose a
slightly more involved albeit manageable version of a variance estimate.
Recall that, in any given tree b, some entries from the reference table are
not included since each tree relies on a bootstrap sample of the training
dataset. The out-of-bag simulations, i.e. unused in a bootstrap sample, can
be exploited toward returning an approximation of E{τ | η(y(t))}, denoted
τ̂
(t)
oob. Indeed, given a vector of summary statistics η(y(t)) of the training

dataset, passing this vector down the ensemble of trees where it has not
been used and mean averaging the associated predictions provide such an
approximation. Since

Var(τ | η(y)) = E
(
[τ−E{τ | η(y)}]2 | η(y)

)
,

we advocate applying the original RF weights wt(η(y)) to the out-
of-bag square residuals (τ(t) − τ̂

(t)
oob)

2, which results in the alternative
approximation

Ṽar(τ | η(y)) =
N

∑
t=1

wt{η(y)}(τ(t)− τ̂
(t)
oob)

2.

Under the same hypotheses as Meinshausen (2006), this estimator
converges when N → ∞. Indeed, τ̂

(t)
oob and ∑

N
t=1 wt(η(y))τ(t) tends to

the same posterior expectation. Hence, the two variance estimators
above mentioned are equivalent. A comparison between different variance
estimators is detailed in the section 2 of Supplementary Information.
Owing to the results of this comparative study, we choose to use the
above alternative variance estimator when presenting the results from two
examples.

As a final remark, it is worth stressing that the approximation of the
posterior covariance between a pair of parameters can be achieved thanks
to a total of three RFs. The details of that statistical extension are presented
in the Section 3 of Supplementary Information.

2.3.5 A new R package for conducting parameter inferences using
ABC-RF

When several parameters are jointly of interest, our recommended global
strategy consists in constructing one independent RF for each parameter of
interest and estimate from each RF several summary measurements of the
posterior distribution (i.e. posterior expectation, quantiles and variance)
of each parameter. However, if one is interested in estimating the posterior
covariance between pair of parameters, an additional RF is required. Our
R library abcrfwas initially developed for Bayesian model choice using
ABC-RF as in Pudlo et al. (2016). The version 1.7.1 of abcrf includes
all the methods proposed in this paper to estimate posterior expectations,
quantiles, variances (and covariances) of parameter(s). abcrf version
1.7.1 is available on CRAN. We provide in the Section 4 of Supplementary
Information, a commented R code that will allow non expert users to
run random forest inferences about parameters using the abcrf package
version 1.7.1.

3 Results
We illustrate the performances of our ABC-RF method for Bayesian
parameter inference on a Normal toy example and on a realistic population
genetics example. In the first case and only in that case, approximations
of posterior quantities can be compared with their exact counterpart. This

example is detailed in Section 1 of Supplementary Information. For both
examples, we further compare the performances of our methodology
with those of earlier ABC methods based on solely rejection, adjusted
local linear (Beaumont et al., 2002), ridge regression (Blum et al.,
2013), adjusted neural networks (Blum and François, 2010), and adaptive
PMC (ABC-PMC, Beaumont et al., 2009; Prangle, 2017). Moreover,
we carried out additional comparisons between ABC-RF, adaptive ABC-
PMC (Beaumont et al., 2009; Prangle, 2017), ABC-SMC (Del Moral
et al., 2012) and adaptive ABC-SMC (Klinger and Hasenauer, 2017)
methods for various tuning parameters (see Section 1 of Supplementary
Information). Due to excessive computational heaviness and in agreement
with the content of the results obtained on the Normal toy example,
we did not extended the later comparisons to the population genetics
example. Normalized mean absolute errors (NMAE) are used to measure
performance on test datasets, the normalization being done by dividing the
absolute error by the true value of the target. A normalized version offers
the advantage of being hardly impacted when only a few observations get
poorly predicted.

For both illustrations, RFs were trained based on the functions of the R
packageranger (Wright and Ziegler, 2017) with forests made of B= 500
trees, with ntry = k/3 selected covariates (i.e. summary statistics) for split-
point selection at each node, and with a minimum node size equals to 5
(Breiman, 2001, and see Section 3.2, Practical recommendations regarding
the implementation of the ABC-RF algorithm). The other ABC methods
in the comparison were based on the same reference tables, calling the
corresponding functions in the R package abc (Csilléry et al., 2012, 2015)
with its default parameters. ABC with neural network adjustment require
the specification of the number of layers composing the neural network: we
opted for the default number of layers in the R package abc, namely 10.
A correction for heteroscedasticity is applied by default when considering
regression adjustment approaches. Note that regression corrections are
univariate for local linear and ridge regression as well as for RF, whereas
neural network - by construction - performs multivariate corrections.

The Normal toy example detailed in Section 1 of Supplementary
Information has two parameter of interest θ1 and θ2. We observed good
overall performances concerning estimation of posterior expectations and
quite acceptable for posterior variances (Figure S1). Quantile estimation
are good for θ1 if less accurate for θ2 (Figure S2). See also Figure S3 for a
direct comparison of the true posterior density distribution function of θ1

in the Normal model with a sample of 40 ABC-RF approximations of the
posterior density (using RF weights), based on 40 independent reference
tables and for two different test datasets. Table S1 and Figure S4 shows
that ABC-RF provides lower NMAE than all other ABC methods. More
specifically, we found that the ABC-RF clearly outperforms all adaptive
and sequential methods (and designs) considered, and that, in contrast
to other methods, ABC-RF was only weakly affected by the presence of
a large number of noise variables (see Table S2 and S3 in Section 1 of
Supplementary Information).

3.1 Human population genetics example

We illustrate our methodological findings with the study of a population
genetics dataset including 50000 single nucleotide polymorphic (SNP)
markers genotyped in four human population samples (The 1000 Genomes
Project Consortium, 2012; see details in Pudlo et al., 2016). The four
populations include Yoruba (Africa; YRI), Han (East Asia; CHB), British
(Europe; GBR) and American individuals of African ancestry (North
America; ASW). The considered evolutionary model is represented in
Figure 1. It includes a single out-of-Africa event with a secondarily split
into one European and one East Asian population lineage and a recent
genetic admixture of Afro-Americans with their African ancestors and with
Europeans. The model was robustly chosen as most appropriate among a
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British
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(Asia)
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Africanancestry
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(Africa)

Time (backward)
- Not at scale-

0

t1

t2

t3
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t2-d3
t2-d4

t3-d34

N1

N3
N2

N4
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Nbn3
Nbn4
Nbn34

Effective 
population sizes

1-rara

Fig. 1. Evolutionary model of four human populations considered for Bayesian parameter
inference using ABC-RF. The prior distributions of the demographic and historical
parameters used to simulate SNP datasets are as followed: Uniform[100; 10 000] for the
split times t2 and t3 (in number of generations), Uniform[1; 30] for the admixture time
t1, Uniform[0.05; 0.95] for the admixture rate ra (proportion of genes with a non-African
origin), Uniform[1000; 100 000] for the stable effective population sizes N1, N2, N3, N4
and N34 (in number of diploid individuals), Uniform[5; 500] for the bottleneck effective
population sizes Nbn3, Nbn4, and Nbn34, Uniform[5; 500] for the bottleneck durations d3,
d4, and d34, Uniform[100; 10 000] for both the ancestral effective population size Na and
t4 the time of change to Na. Conditions on time events were t4>t3>t2. See Pudlo et al.
(2016) for details. Regarding the genetic model, we simulated biallelic polymorphic SNP
datasets using the algorithm proposed by Hudson (2002) (cf “-s 1” option in the program
ms associated to Hudson (2002)). This coalescent-based algorithm provides the simulation
efficiency and speed necessary in the context of ABC, where large numbers of simulated
datasets including numerous (statistically independent) SNP loci have to be generated (see
Supplementary Appendix S1 of Cornuet et al. (2014) for additional comments on Hudson’s
algorithm).

set of eight evolutionary models, when compared using ABC-RF for model
choice in Pudlo et al. (2016).

We here focused our investigations on two parameters of interest in this
model: (i) the admixture rate ra (i.e. the proportion of genes with a non-
African origin) that describes the genetic admixture between individual
of British and African ancestry in Afro-Americans individuals; and (ii)
the ratio N2/Na between the ancestral effective population size Na and
African N2 (in number of diploid individuals), roughly describing the
increase of African population size in the past. Considering ratios of
effective population sizes allows preventing identifiability issues of the
model.

We used the software DIYABC v.2.0 (Cornuet et al., 2008, 2014) to
generate a reference table of size 200000, with N = 199000 datasets being
used as training dataset and Npred = 1000 remaining as test datasets. RFs
are built in the same way as for our Normal example and make use of the
k = 112 summary statistics provided for SNP markers by DIYABC, (see
Pudlo et al., 2016, and the Section 5 of Supplementary Information).

Due to the complexity of this model, the exact calculation of any
posterior quantity of interest is infeasible. To bypass this difficulty we
compute NMAE using simulated parameters from the test table, rather
than targeted posterior expectations ; in this case the normalization is
performed by dividing by simulated parameter values. Here, 95% credible
intervals (CI) are deduced from posterior quantile estimate of order 2.5%
and 97.5%. Performances are measured via mean range and coverage, with
coverage corresponding to the percentage of rightly bounded parameters.
For example a 95% CI should provide coverage equal to 95% of the test
table.
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Fig. 2. Range and coverage comparison of approximate 95% credible intervals on the
admixture parameter ra (Figure 1) obtained with ABC-RF (RF) and with earlier ABC
methods : rejection (Reject), adjusted local linear (ALL) or ridge regression (ARR) or neural
network (ANN) with various tolerance levels for Reject, ALL, ARR and ANN. Coverages
values are specified by bar colors and superimposed values. Heights indicate CI mean
lengths. Results for ALL, Reject and RF are presented in the upper figure whereas those
for ANN, ARR and RF are in the lower figure. See Figure S7 for a similar representation of
results for the parameter N2/Na. RF∗ refers to results obtained using ABC-RF when adding
20 additional independent noise variables generated from a uniform U[0,1] distribution. RF
refers to results without noise variables.

Figure 2, Figure S7 and Table S5 illustrate the quality of the ABC-RF
method when compared with ABC with either rejection, local linear, ridge
or neural network adjustment (with logit transforms of the parameters for
non rejection methods) using different tolerance levels (i.e., with tolerance
proportion ranging from 0.005 to 1). We recall that considering the ABC
rejection method with a tolerance equals to 1 is equivalent to work with
the prior. Note that, due to memory allocation issues when using ABC
method with adjusted ridge regression and a tolerance level of 1 on large
reference table, we did not manage to recover results in this specific case.

Interesting methodological features can be observed in association with
this example. ABC with rejection performs poorly in terms of NMAE and
provides conservative and hence wide CIs (i.e., with coverage higher than
the formal level). For ABC with adjustment, the lower the tolerance the
lower the error (Table S5). The CI quality however highly suffers from low
tolerance, with underestimated coverage (Figures 2 and S7). The smaller
the tolerance value, the narrower the CI. Results for the ABC method with
adjusted ridge regression seems however to be unstable for the parameter
N2/Na depending on the considered level of tolerance. The ABC method
using neural network and a tolerance level of 0.005 provides the lowest
NMAE for both parameters of interest. The corresponding coverages are
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however underestimated, equal to 87.2% for ra and 81.6% for N2/Na, when
95% is expected (lower part of Figure 2 and Figure S7). Note that results
with this method can be very time consuming to obtain when the tolerance
level and the number of layers are large. The ABC-RF method provides
an appealing trade-off between parameter estimation quality (ABC-RF is
the method with the second lowest NMAE values in Table S5) and slightly
conservative CIs (Figures 2 and S7). Similar results and methodological
features were observed when focusing on the 90% CI (results not shown).
It is also worth stressing that not any calibration of any kind of a tolerance
level parameter are needed with ABC-RF, which is an important plus for
this method. On the opposite, earlier ABC methods require calibration to
optimize their use, such calibration being time consuming when different
levels of tolerance are used.

For the observed dataset used in this study, posterior expectations
and quantiles of the parameters of interest ra and N2/Na are reported in
Tables S6 and S7. Expectation and CI values substantially vary for both
parameters, depending on the method used. The impact of the tolerance
levels is noteworthy for both the rejection and local linear adjustment
ABC methods. The posterior expectation of ra obtained using ABC-
RF was equal to 0.221 with a relatively narrow associated 95% CI of
[0.112,0.287]. The latter estimation lays well within previous estimates
of the mean proportion of genes of European ancestry within African
American individuals, which typically ranged from 0.070 to 0.270−with
most estimates around 0.200 −, depending on individual exclusions, the
population samples and sets of genetic markers considered, as well as
the evolutionary models assumed and inferential methods used (reviewed
in Bryc et al., 2015). Interestingly, a recent genomic analysis using
a conditional random field parametrized by random forests trained on
reference panels (Maples et al., 2013) and 500000 SNPs provided a similar
expectation value of ra for the same African American population ASW
(i.e. ra = 0.213), with a somewhat smaller 95% CI (i.e. [0.195,0.232]),
probably due to the ten times larger number of SNPs in their dataset
(Baharian et al., 2016).

The posterior expectation of N2/Na obtained using ABC-RF was
equal to 4.508 with a narrow associated 95% CI of [3.831,5.424]. Such
values point to the occurrence of the substantial ancestral demographic
and geographic expansion that is widely illustrated in previous Human
population genetics studies, including African populations (e.g. Henn
et al., 2012). Although our modeling setting assumes a naïve abrupt
change in effective population sizes in the ancestral African population, the
equivalent of N2/Na values inferred from different methods and modeling
settings fit rather well with our own posterior expectations and quantiles
for this parameter (e.g. Schiffels and Durbin, 2014).

In contrast to earlier ABC methods, the RF approach is deemed to be
mostly insensitive to the presence of covariates whose the distributions
does not depend on the parameter values (i.e. ancillary covariates) (e.g.
Breiman, 2001; Marin et al., 2012). To illustrate this feature, we have added
20 additional independent noise variables generated from a uniform U[0,1]

distribution (results designated by RF∗) in the reference table generated
for the present Human population genetics example. We found that the
presence of such noise covariates do not impact the results in terms
of NMAE, coverage and only slightly on parameter estimation for the
observed dataset (Tables S6, S7 and S8, and Figures 2 and S7). For the
rest of the article, no noise variables were used.

3.2 Practical recommendations regarding the
implementation of the ABC-RF algorithm

We mainly consider in this section two important practical issues, namely
the choice of the number of simulations (N) in the reference table and of
the number of trees (B) in the random forest. For sake of simplicity and
concision, we focus our recommendations on the above human population

genetics example (subsection 3.1). We stress here that, although not
generic, our recommendations fit well with other examples of complex
model settings that we have analysed so far (results not shown). We
also stress that for simpler model settings substantially smaller N and B
values were sufficient to obtain good results. Finally, we provide practical
comments about the main sources of variabilities in inferences typical of
the ABC-RF methodology.

Reference table size− We consider a reference table made of N = 199000
simulated datasets. However, Table S9 shows a negligible decrease of
NMAE when using N = 100000 to N = 199000 datasets. Table S10
also exhibits small variations between predictions on the observed dataset,
especially for N ≥ 7500. The level of variation thus seems to be compatible
with the random variability of the RF themselves. Altogether, using a
reference table including 100000 datasets seems to be a reasonable default
choice. It is worth stressing that the out-of-bag mean squared error can be
easily retrieved without requiring the simulation of a (small size) secondary
test table. It provides a good indicator of the quality of the RF at a low
computational cost (Tables S9 and S11).

Number of trees − A forest including 500 trees is a default choice when
building RFs, as this provides a good trade-off between computation
efficiency and statistical precision (Breiman, 2001; Pudlo et al., 2016).
To evaluate whether or not this number is sufficient, we recommend to
compute the out-of-bag mean squared error depending on the number of
trees in the forest for a given reference table. If 500 trees is a satisfactory
calibration, one should observe a stabilization of the error around this
value. Figure S8 illustrates this representation on the human population
genetics example and points to a negligible decrease of the error after 500
trees. This graphical representation is produced via our R package abcrf.

Minimum node size (maximum leaf size)− We recall that splitting events
during a tree construction stop when a node has less than Nmin observations,
in that case, the node becomes a leaf. Note that the higher Nmin the quicker
RF treatments. In all RF treatments presented here, we used the default
size Nmin = 5. Table S11 illustrates the influence of Nmin on the human
population genetics example and highlights a negligible decrease of the
error for Nmin lower than 5.

Finally, we see no reason to change the number of summary statistics
sampled at each split ntry within a tree, which is traditionally chosen as k/3
for regression when k is the total number of predictors (Breiman, 2001).

Variability in the ABC-RF methodology − The ABC-RF methodology
is associated with different sources of variabilities the user should be
aware of. Using a simulated reference table is the main source, RF being
the second. Indeed, predicting quantities of interest for the same test
dataset with two different reference tables of equal size N will result in
slightly different estimates. This variation has been previously highlighted
in Figure S3 dealing with the analysis of the Normal toy example. We
recall RF are composed of trees trained on bootstrap samples, each one
considering ntry covariates randomly selected amongst the k available at
each split. This random aspects of RF results in variability. In practice,
a good user habit should be to run ABC-RF more than once on different
training datasets to ensure that the previously mentioned variabilities are
negligible. If this variability is significant, we recommend considering a
reference table of higher size.

4 Discussion
This paper introduces a novel approach to parameter estimation in
likelihood-free problems, relying on the machine-learning tool of
regression RF to automate the inclusion of summary statistics in ABC
algorithms. Our simulation experiments demonstrate several advantages
of our methodological proposal compared with earlier ABC methods.
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While using the same reference table and test dataset for all compared
methods, our RF approach appears to be more accurate than previous
ABC solutions. Approximations of expectations are quite accurate,
while posterior variances are only slightly overestimated, which is an
improvement compared with other approaches that typically underestimate
these posterior variances. The performances for covariance approximation
are quite encouraging as well, although the method is still incomplete
and need further developments on this particular point (more details are
given in Section 3 of Supplementary Information). We found that quantile
estimations depend on the corresponding probability and we believe this
must be related to the approximation error of the posterior cumulative
function F(x | η(y)). More specifically, we observed that upper quantiles
may be overestimated, whereas lower quantiles may be underestimated
(Figure S2), indicating fatter tails in the approximation. Hence, credible
intervals produced by the RF solution may be larger than the exact ones.
However from a risk assessment point of view, this overestimation aspect
clearly presents less drawbacks than underestimation of credible intervals.
Altogether, owing to the various models and datasets we analysed, we
argue that ABC-RF provides a good trade-off in terms of quality between
parameter estimation of point estimators (e.g. expectation, median or
variance) and credible interval coverage. A comparison of computing times
is given in Section 9 of the Supplementary Information.

Throughout our experiments, we found that, contrary to earlier ABC
methods, the RF approach is mostly insensitive to the presence of
covariates whose the distributions does not depend on the parameter values
(ancillary covariates). Therefore, we argue that the RF method can deal
with a very large number of summary statistics, bypassing any form of
pre-selection of those summaries. Interestingly, the property of ABC-RF to
extract and adaptively weight information carried by each of the numerous
summary statistics proposed as explanatory variables can be represented by
graphs, showing the relative contribution of summary statistics in ABC-RF
estimation for each studied parameter (see Section 8 of the Supplementary
Information for details).

As an alternative, Papamakarios and Murray (2016) propose to
approximate the whole posterior distribution by using Mixture Density
Networks (MDN, Bishop, 1994). The MDN strategy consists in using
Gaussian mixture models with parameters calibrated thanks to neural
networks. The strategy of Papamakarios and Murray (2016) is to iteratively
learn an efficient proposal prior (approximating the posterior distribution),
then to use this proposal to train the posterior, both steps making use of
MDN. This strategy can be easily applied when the prior is uniform or
Gaussian, but other prior choices can involve difficulties. This is because
in such cases, it might be difficult to simulate from the corresponding
proposal. The approximation accuracy of the posterior as a Gaussian
mixture model depends of the number of components and the number of
hidden layers of the networks. Those two parameters require calibration.
Finally, by using MDN, one loses the contribution of summary statistics
provided by RF and thus some useful interpretation elements. Despite
these remarks, this promising method remains of interest and is worth
mentioning.

The RF method focuses on unidimensional parameter inference. Multi-
objective random forest (Kocev et al., 2007) could be a solution to deal with
multidimensional parameter using RF. However, our attempts based on the
later methodology were so far unfruitful (results not shown). An alternative
approach could be based on using the RF strategies to approximate some
conditionals distributions and then recover the joined posterior using either
a Gibbs sampler (based on approximated full conditionals) or Russian
rule decompositions to which a product of embedded full conditionals is
associated. We are presently comparing the two strategies on simulated
datasets.

In population genetics, which historically corresponds to the field of
introduction of ABC methods, next generation sequencing technologies

result in large genome-wide datasets that can be quite informative about
the demographic history of the genotyped populations. Several recently
developed inferential methods relying on the observed site frequency
spectrum appear particularly well suited to accurately characterizing the
complex evolutionary history of invasive populations (Gutenkunst et al.,
2009; Excoffier et al., 2013). Because of the reduced computational
resources demanded by ABC-RF and the above-mentioned properties of
the method, we believe that ABC-RF can efficiently contribute to the
analysis of massive SNP datasets, including both model choice (Pudlo
et al., 2016) and Bayesian inference about parameters of interest. More
generally, the method should appeal to all scientific fields in which large
datasets and complex models are analysed using simulation-based methods
such as ABC (e.g. Beaumont, 2010; Sisson et al., 2018).
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