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ABSTRACT
The statistical modeling of spatial extremes has been an active area of recent research with a growing
domain of applications.Muchof the existingmethodology, however, focuses on themagnitudes of extreme
events rather thanon their timing. To address this gap, this article investigates the notion of extremal concur-
rence. Suppose that daily temperatures are measured at several synoptic stations. We say that extremes are
concurrent if record maximum temperatures occur simultaneously, that is, on the same day for all stations.
It is important to be able to understand, quantify, and model extremal concurrence. Under general condi-
tions, we show that the finite sample concurrence probability converges to an asymptotic quantity, deemed
extremal concurrenceprobability. UsingPalmcalculus,we establish general expressions for the extremal con-
currence probability through themax-stable process emerging in the limit of the component-wise maxima
of the sample. Explicit forms of the extremal concurrence probabilities are obtained for various max-stable
models and several estimators are introduced. In particular, we prove that the pairwise extremal concur-
rence probability for max-stable vectors is precisely equal to the Kendall’s τ . The estimators are evaluated
from simulations and applied to study temperature extremes in the United States. Results demonstrate that
concurrence probability can be used to study, for example, the effect of global climate phenomena such
as the El Niño Southern Oscillation (ENSO) or global warming on the spatial structure and areal impact of
extremes.

1. Introduction

The theory of multivariate and spatial extremes is a rapidly
developing area motivated by environmental, climate, or
even financial applications, see, for example, the monograph
(Finkenstädt and Rootzén 2004) and some recent studies
(Cooley, Nychka, and Naveau 2007; Reich and Shaby 2012;
Wadsworth and Tawn 2014; Asadi, Davison, and Engelke
2015), to name a few. So far, however, in many applications the
prevailing methodology focuses on modeling the magnitudes
of the extremes rather than their timing. This can hinder the
understanding of the underlying mechanisms giving rise to
large values. For example, a popular approach is as follows. Let
Xt (s), t = 1, . . . , n be a space-time random field modeling the
maximum temperature on day t at site s. In practice, measure-
ments are available at a set of stations {s1, . . . , sk} ⊂ R 2. At each
location s, define the temporal maxima

Mn(s) = max
t=1,...,n

Xt (s).

Assuming weak dependence over time, asymptotic theory
(Leadbetter, Lindgren, and Rootzén 1983; Resnick 1987; de
Haan and Ferreira 2006) implies that, with suitable location and
scale functions bn(s) and an(s) > 0,

{
Mn(s) − bn(s)

an(s)

}

s∈R2
−→ {η(s)}s∈R2, n → ∞, (1)

where the limit η = {η(s)} is a max-stable random field, and the
convergence is understood in the sense of finite-dimensional
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distributions. The one-dimensional marginal distributions of
η necessarily belong to the generalized extreme value (GEV)
family:

P{η(s) ≤ x} = exp

[

−
{
1 + ξ (s)

x − µ(s)
σ (s)

}−1/ξ (s)

+

]

,

{µ(s), σ (s), ξ (s)} ∈ R × (0,∞) × R .

From a statistical standpoint, two strategies are possible. A
two-step procedure can be used to first estimate the marginal
parameters and then, based on these estimates and using the
probability integral transform or the empirical distribution, fit
a unit Fréchet max-stable process (Davison and Gholamrezaee
2011; Ribatet 2013). A second strategy consists in fitting both the
marginal parameter and the spatial dependence structure simul-
taneously (Padoan, Ribatet, and Sisson 2010; Davison, Padoan,
and Ribatet 2012). Either way, the spatial dependence structure
is assumed to be one of the available max-stable models, for
example, Schlather (Schlather 2002), Extremal-t (Opitz 2013),
Brown-Resnick (Kabluchko, Schlather, and de Haan 2009). The
fitted max-stable model can then be used to quantify various
probabilities of spatial extremes (Davison, Padoan, and Ribatet
2012; Ribatet 2013), do prediction and conditional simulations
(Wang and Stoev 2011a; Dombry, Éyi-Minko, and Ribatet 2013;
Oesting and Schlather 2013) or downscaling (Oesting, Bel, and
Lantuéjoul 2018). Recently Asadi, Davison, and Engelke (2015)
extended the methodology to the modeling of river extremes,

©  American Statistical Association

http://www.tandfonline.com
https://doi.org/10.1080/01621459.2017.1356318
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2017.1356318&domain=pdf&date_stamp=2018-12-14
mailto:mathieu.ribatet@umontpellier.fr
http://www.tandfonline.com/r/JASA


1566 C. DOMBRY, M. RIBATET, AND S. STOEV

where the notion of spatial dependence is expressed in terms of
hydrological distance.

The general approach outlined above focuses on the mag-
nitude of extremes. When considering multivariate or spatial
extremes over a long period, the occurrence times of extremes
at different components or regions become important as well.
Indeed practitioners may wonder whether or not the maxima
Mn(s1) and Mn(s2) at two different sites are achieved at the
same time. The recent approaches of Wadsworth and Tawn
(2014); Engelke et al. (2015) and also the seminal work of
Stephenson and Tawn (2005) incorporate more information
than the point-wise maximum {Mn(s)} field and can help
address this issue. In these works, the timing and simultaneous
occurrence of extremes arise naturally as ingredients in certain
calculations of Poisson process likelihoods (Stephenson and
Tawn 2005; Wadsworth and Tawn 2014). So far, however, to the
best of our knowledge, the timing or simultaneous occurrence
of extremes has received little attention with the notable excep-
tion of Ledford and Tawn (1998); Hashorva and Hüsler (2005);
Stephenson and Tawn (2005); Wadsworth and Tawn (2014);
and Wadsworth (2015).

In this article, we focus on the notion concurrence of
extremes. Given a sequence X1, . . . ,Xn of independent copies
of a stochastic process X = {X (s)}s∈X defined on a region
X ⊂ R d , d ≥ 1, we say that extremes are sample concurrent at
locations s1, . . . , sk ∈ X , k ≥ 2, if

Mn(s j) = max
t=1,...,n

Xt (s j) = Xt0 (s j), j = 1, . . . , k, (2)

for some fixed t0 ∈ {1, . . . , n}, independent of j. Thus, only
one observation Xt0 = {Xt0 (s)}s∈X is responsible for generating
the point-wise maxima at locations s1, . . . , sk. The left panel of
Figure 1 illustrates the notion of concurrence by showing that
extremes are sample concurrent at (s2, s3) but not at (s1, s2, s3).

The probability of the sample concurrence event,
denoted

pn(s1, . . . , sk) = P[for some t0 ∈ {1, . . . , n} : Mn(s j)
= Xt0 (s j), for all j = 1, . . . , k], (3)

is henceforth referred to as sample concurrence probability. Pro-
vided that X has continuous margins, it is not difficult to see

that

pn(s1, . . . , sk) = nE
[
F {X (s1), . . . ,X (sk)}n−1] ,

where F is the multivariate cumulative distribution of
{X (s1), . . . ,X (sk)}. Interestingly, the concurrence of extremes
event is invariant under increasing transformations of the
marginals, so pn(s1, . . . , sk) does not depend on the marginal
distributions of X but only on its dependence structure, that is,
the copulaC associated with F .

One drawback of pn(s1, . . . , sk) is that it depends on the sam-
ple size n, but we will show later in Theorem 1, that, under mild
regularity conditions, this quantity stabilizes to a universal large
sample limit

pn(s1, . . . , sk) −→ p(s1, . . . , sk), n → ∞. (4)

Throughout this article, we will call the above limiting prob-
ability p(s1, . . . , sk) the extremal concurrence probability. Note
that this result was first established using a different approach by
Hashorva and Hüsler (2005, Theorem 2.1, eq. (5))—but see also
Gnedin (1993, 1994, 1998). Our approach differentiates from
these previous works as it is based on the spectral characteri-
zation of max-stable processes. This new approach appears to
be an important new insight showing that, for large n, the sam-
ple concurrence probability pn(s1, . . . , sk) can be interpreted as
the chance that a single heatwave event affecting all the sites
{s1, . . . , sk} is responsible for the record maxima. Consequently
concurrence probabilities can help understanding and quantify-
ing the areal extent of extreme event.

In Section 2, we make connections between the sample
and extremal concurrence probabilities and establish general
properties and formula. Section 3 gives closed forms for various
parametricmax-stablemodels, and Section 4 introduces various
estimators for the sample/extremal concurrence probabilities.
The proposed estimators are then analyzed in a simulation
study (Section 5) and applied to US continental temperature
extremes in Section 6.

2. Concurrence of Extremes

In this section, we show that sample concurrence probabili-
ties converge to extremal concurrence ones under rather mild
domain of attraction conditions. We then provide formulas for

Figure . Illustration of the notion of sample (left) and extremal (right) concurrence. In both situations, extremes are concurrent at (s2, s3) but not at (s1, s2, s3).
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the extremal concurrence probability based on the spectral rep-
resentation of the associated max-stable process and establish
their basic properties.

2.1. Max-Stable Processes and the Definition of Extremal
Concurrence

As discussed in the introduction, the sample concurrence
probability converges to an asymptotic extremal concurrence
probability p(s1, . . . , sk), suggesting that one single (random)
function contributes to η at locations s1, . . . , sk.

It is well known that every continuous in probability max-
stable process η standardized to have unit Fréchet margins has a
spectral representation (de Haan 1984; Penrose 1992; Schlather
2002)

η(s) = max
i≥1

ζiYi(s) s ∈ X , (5)

where {ζi : i ≥ 1} are the points of a Poisson process on (0,∞)

with intensity measure ζ−2dζ , and Yi are independent copies
of a nonnegative stochastic process such that E{Y (s)} = 1
for all s ∈ X . Standard computations shows that the finite-
dimensional distributions of η are

P{η(s j) ≤ z j, j = 1, . . . , k} = exp
[
−E

{
max
j=1,...,k

Y (s j)
z j

}]
,

(6)

where z j > 0, j = 1, . . . , k (see also Proposition 5.11 in Resnick
1987).

It is often more convenient to rewrite (5) as

η(s) = max
ϕ∈'

ϕ(s), s ∈ X , (7)

where' = {ϕi : i ≥ 1} with ϕi = ζiYi is a Poisson point process
on a space of nonnegative functions on X . Following the termi-
nology of Smith (1990), the functions ϕ ∈ ' may be viewed as
random “storms,” whose component-wise maximum yields the
max-stable process η. They may be continuous or discontinu-
ous, depending on the model (see, e.g., Resnick and Roy 1991).

We say that extremes are concurrent at s1, . . . , sk ∈ X if

η(s j) = ϕℓ(s j), j = 1, . . . , k, (8)

for some ℓ ≥ 1. That is, a single spectral function (storm) is
responsible for the maximum at all k sites. Similarly to the def-
inition of the sample concurrence probability (3), the extremal
concurrence probability is defined by

p(s1, . . . , sk)
= P

{
for some ℓ ≥ 1 : η(s j) = ϕℓ(s j), j = 1, . . . , k

}
. (9)

We will show in the next section that the extremal concur-
rence probability does not depend on the choice of the spec-
tral representation and is well-defined. It turns out that when
k = 2 the extremal concurrence probability p(s1, s2) is precisely
the Kendall’s τ measure of dependence for themax-stable vector
{η(s1), η(s2)} (see Theorem 3). In this case, p(s1, s2) also coin-
cides with the dependence measure considered in Weintraub
(1991) to study mixing properties of max-stable processes.

Interestingly, the extremal concurrence probability shares
connections with a widely used dependence measure for
extremes known as the bivariate extremal coefficient (Schlather
and Tawn 2003; Cooley, Naveau, and Poncet 2006)

θ (s1, s2) = − logP{η(s1) ≤ 1, η(s2) ≤ 1}, s1, s2 ∈ X . (10)

For instance, Proposition 5.1 in Stoev (2008) implies

1
2
{2 − θ (s1, s2)} ≤ p(s1, s2) ≤ 2{2 − θ (s1, s2)}, (11)

and we shall see later that the properties of the extremal concur-
rence probability are similar to that of the extremal coefficient.

2.2. Hitting Scenarios, Sample, and Extremal Concurrence

Concurrence of extremes can be defined through the more
general notion of a hitting scenario (Wang and Stoev 2011b;
Dombry and Éyi-Minko 2013), which reflects precisely how
many different events contribute to the componentwise max-
imum. Let X1, . . . ,Xn be independent copies of a stochastic
process X defined on X and s1, . . . , sk ∈ X be different loca-
tions. We suppose that X has continuous marginals to ensure
that {X1(s j), . . . ,Xn(s j)} has no ties almost surely and that the
maximum is uniquely reached. Let Mn(s) = maxi=1,...,n Xi(s)
be the componentwise maximum and consider the sets
Ci = { j : Mn(s j) = Xi(s j)}, i = 1, . . . , n, that account for the
location where the ith component Xi dominates the rest. Some
of these sets may be empty, but from the above discussion, with
probability one the nonempty ones are disjoint and form a ran-
dom partition of {1, . . . , k}. This partition πn = {Ci : Ci ̸= ∅}
will be referred to as the sample hitting scenario.

By analogy with extremal concurrence, one can define an
extremal hitting scenario associated with a max-stable process
by using the underlying Poisson point process (Wang and Stoev
2011b; Dombry, Éyi-Minko, and Ribatet 2013; Dombry and Éyi-
Minko 2013). More precisely, for η as in (7), the extremal hitting
scenario π is defined as the random partition of {1, . . . , k} such
that two indices j1, j2 ∈ {1, . . . , k} are in the same component
of π if and only if

argmax
i≥1

ϕi(s j1 ) = argmax
i≥1

ϕi(s j2 ), ϕi ∈ '.

Whatever type of concurrence is considered, sample concur-
rence (2) or extremal concurrence (8), extremes are said to be
concurrent if and only ifπn = {1, . . . , k} orπ = {1, . . . , k}. The
next theorem shows the convergence of the sample hitting sce-
nario to the extremal one.

Theorem 1. Assume that [h1{X (s1)}, . . . , hk{X (sk)}] belongs to
the maximum domain of attraction of {η(s1), . . . , η(sk)}, for
some strictly increasing deterministic functions hi, i = 1, . . . , k.
Then, the sample hitting scenario πn converges in distribution
as n → ∞ to the extremal hitting scenario π of the max-stable
process η.

The proof is given in the supplementary material.

Corollary 1. If the stochastic process X is in the domain of
attraction of somemax-stable process η, the sample concurrence



1568 C. DOMBRY, M. RIBATET, AND S. STOEV

probability converges to its extremal counterpart,

pn(s1, . . . , sk) = P [πn = {1, . . . , k}] −→ P [π = {1, . . . , k}]
= p(s1, . . . , sk), n → ∞,

and proves (4).

Remark 1. This result, and in fact, a concrete formula for
the concurrence probability was first obtained by Hashorva
and Hüsler (2005, Theorem 2.1) with different methods. Our
Theorem 1 extends these results to the convergence of hitting
scenarios, where our proof involves point process limits and
continuous mapping.

2.3. General Formulas for the Extremal Concurrence
Probabilities

The following theorem gives an expression for the extremal con-
currence probability p(s1, . . . , sk).

Theorem 2. We have

p(s1, . . . , sk) = EY

⎛

⎝
[

EỸ

{

max
j=1,...,k

Ỹ (s j)
Y (s j)

}]−1
⎞

⎠ , (12)

whereY and Ỹ are independent copies of the stochastic process
appearing in (5).

Alternatively, we also have

p(s1, . . . , sk)

=
k∑

r=1
(−1)r

∑

J⊆{1,...,k}
|J|=r

Eη̃

[
logPη

{
η(s j) ≤ η̃(s j), j ∈ J

}]
, (13)

where η̃ is an independent copy of η.

Proof. We consider here only the proof of (12). The proof of (13)
is given in the supplementary material.

It suffices to restrict the representation (7) to the space R k
+,

corresponding to coordinates s1, . . . , sk. Let+ denote the inten-
sity measure of the Poisson point process ' induced on R k

+:

+(A) =
∫ ∞

0
P
[{

ζY (s j) : j = 1, . . . , k
}

∈ A
]
ζ−2dζ ,

for all Borel sets A ⊂ R k
+. We have by the Slyvniak–Mecke for-

mula (see, e.g., Schneider and Weil 2008, p. 68) that

p(s1, . . . , sk)
= P {∃ϕ ∈ ' : ϕ(s1) = η(s1), . . . , ϕ(sk) = η(sk)}

=
∫

Rk
+

P
{
η̃(s j) < x j, j = 1, . . . , k

}
+(dx1, . . . , dxk), (14)

where η̃ is an independent copy of η. Using the formof the inten-
sity of ' in the right-hand side of (14), we further obtain

p(s1, . . . , sk)

= EY

[ ∫ ∞

0
P
{
η̃(s j) < ζY (s j), j = 1, . . . , k

}
ζ−2dζ

]

= EY

(∫ ∞

0
exp

[

−EỸ

{

max
j=1,...,k

Ỹ (s j)
ζY (s j)

}]

ζ−2dζ

)

= EY

⎛

⎝
[

EỸ

{

max
j=1,...,k

Ỹ (s j)
Y (s j)

}]−1
⎞

⎠ .

In the second relation, we used the expression (6) with Ỹ an
independent copy ofY and the last relation follows from the fact
that

∫∞
0 e−a/ζ ζ−2dζ = a−1, a > 0. !

Remark 2. By the seminal article of de Haan (1984) (see
also Stoev and Taqqu 2005; Kabluchko 2009), any continuous
in probability max-stable process can be represented as

{η(s) : s ∈ X } d=
{
max
i≥1

ζi fs(ui) : s ∈ X
}

, (15)

where { fs : s ∈ X } is a collection of nonnegative integrable func-
tions on the space (U,U , ν). Here {(ζi, ui) : i ≥ 1} is a Pois-
son point process on (0,∞) ×U with intensity ζ−2dζν(du).
The functions { fs : s ∈ X } are known as spectral functions of η

and (15) as de Haan’s spectral representation. When ν is a prob-
ability measure, one can viewY (s) = fs as random variables on
the probability space (U,U , ν) and then (15) becomes (5). Con-
versely, any representation (15) can be cast in the form (5) with
a change of variables. Depending on the context one represen-
tation may be more convenient than the other. In terms of (15),
the concurrence probability formula in (12) becomes

p(s1, . . . , sk) =
∫

U

[∫

U

{

max
j=1,...,k

fs j (ũ)

fs j (u)

}

ν(dũ)

]−1

ν(du),

(16)
and the proof is essentially the same.

Remark 3. The notions of sample and extremal concurrence can
be naturally extended to infinite sets of sites K ⊂ X . Barring
measurability details, the proof of Theorem 2 remains the same
and formula (12) becomes

p(K) = EY

⎛

⎝
[

EỸ

{

sup
s∈K

Ỹ (s)
Y (s)

}]−1
⎞

⎠ , (17)

provided that the underlying suprema of stochastic processes are
well-defined random variables. Here, for simplicity of exposi-
tion,we focus on the case of concurrence overfinitelymany sites,
which requires no joint measurability assumptions onY (·) and
is sufficient for most practical applications. For further theoret-
ical treatment of concurrence over regions, see Dombry, Falk,
and Zott (2015).

In the bivariate case k = 2, Equation (13) reads

p(s1, s2) = 2 + Eη̃

[
logPη

{
η(s j) ≤ η̃(s j), j = 1, 2

}]
. (18)

This entails the very unexpected result that the bivari-
ate extremal concurrence probability equals the well-known
Kendall’s τ .
Theorem 3. For any max-stable process η, we have

p(s1, s2) = τ{η(s1 ),η(s2 )}

≡ E
[
sign{η(s1) − η⋆(s1)}sign{η(s2) − η⋆(s2)}

]
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is the Kendall’s τ of {η(s1), η(s2)} and η⋆ is an independent copy
of η.

Proof. LetW = F{η(s1), η(s2)} where F is the bivariate cumu-
lative distribution function of {η(s1), η(s2)}. From (18) we
have p(s1, s2) = 2 + E(logW ). But since {η(s1), η(s2)} is a
bivariate max-stable random vector, we know that P(W ≤
w) = w − (1 − τ )w logw, 0 ≤ w ≤ 1 (Ghoudi, Khoudraji,
and Rivest 1998) and hence, after some simple calculations,
p(s1, s2) = τ . !

2.4. Properties of Extremal Concurrence Probabilities

In the remaining part of this section, we investigate some prop-
erties of the extremal concurrence probabilities. Surprisingly,
although the two notions are different, we encounter strong con-
nections with the extremal coefficient (10). We recall that the
extremal coefficient θ (s1, s2) takes values in [1, 2], the lower and
upper bounds correspond to perfect dependence and indepen-
dence, respectively. The next proposition states a similar result
for the extremal concurrence probability.

Proposition 1. For all s1, s2 ∈ X , we have
(i) p(s1, s2) = 0 if and only if η(s1) and η(s2) are

independent;
(ii) p(s1, s2) = 1 if and only if η(s1) and η(s2) are almost

surely equal.

The proof uses the following generalization and improve-
ment of the upper bound in (11).

Lemma 1. For all s1, . . . , sk ∈ X , k ≥ 2, we have p(s1, . . . , sk) ≤
E{min j=1,...,k Y (s j)}.

Proof. In the context of Theorem 2, we have (by conditioning on
Y )

EỸ

{

max
j=1,...,k

Ỹ (s j)
Y (s j)

}

≥ max
j=1,...,k

Y (s j)−1EỸ {Ỹ (s j)}

=
{

min
j=1,...,k

Y (si)
}−1

,

since EỸ {Ỹ (s j)} = 1. This, in view of (12) implies the desired
result. !
Proof of Proposition 1. Equation (11) implies that p(s1, s2) = 0
if and only if θ (s1, s2) = 2 which is equivalent to the indepen-
dence of η(s1) and η(s2). When p(s1, s2) = 1, Lemma 1 entails
Y (s1) = Y (s2) almost surely so that η(s1) = η(s2) almost surely,
becauseY (si) ≥ 0, i = 1, 2 and E{Y (s1)} = E{Y (s2)} = 1. It is
easy to prove the converse implication: if η(s1) and η(s2) are
almost surely equal, the same holds for Y (s1) and Y (s2) so that
p(s1, s2) = 1. !

Interestingly p(s1, . . . , sk) can be expressed via the extremal
coefficients of another max-stable process.

Proposition 2. Let η̃, η̃1, η̃2, . . . be independent copies of the
max-stable process η defined in (5) and consider the simple
max-stable process

ξ (s) = max
i≥1

ζi
Yi(s)
η̃i(s)

, s ∈ X .

We have

p(s1, . . . , sk) =
k∑

r=1
(−1)r+1

∑

J⊆{1,...,k}
|J|=r

θξ (s j, j ∈ J), (19)

where θξ (s j, j ∈ J) = − logP{ξ (s j) ≤ 1, j ∈ J} and in
particular,

p(s1, s2) = 2 − θξ (s1, s2).

Proof. Clearly ξ is a simple max-stable process since bothY and
η̃ are nonnegative andE{Y (s)/η̃(s)} = 1 for all s ∈ X .We have

Eη̃

[
logPη

{
η(s j) ≤ η̃(s j), j ∈ J

}]

= −Eη̃

[
EY

{
max
j∈J

Y (s j)
η̃(s j)

}]

= logPξ

{
ξ (s j) ≤ 1, j ∈ J

}
= −θξ (s j, j ∈ J),

and (19) follows from (13). !

The next corollary lists some properties of the extremal con-
currence probability function that closely parallel those of the
extremal coefficient function. In view of Proposition 2, the proof
follows from Schlather and Tawn (2003) or Cooley, Naveau, and
Poncet (2006).

Corollary 2. Let p : h .→ p(o, h) be an extremal concurrence
probability function associated with a stationary max-stable
process in X for some arbitrary origin o ∈ X and h ∈ X . Then
the following assertions hold.

(i) The function h .→ p(h) is positive semidefinite;
(ii) The function h .→ p(h) is not differentiable at the origin

unless p(h) = 1 for all h ∈ X ;
(iii) If d ≥ 1 and if η is isotropic, then h .→ p(h) has at most

a jump at the origin and is continuous elsewhere;
(iv) {2 − p(h1 + h2)} ≤ {2 − p(h1)}{2 − p(h2)} for all

h1, h2 ∈ X ;
(v) {2 − p(h1 + h2)}α ≤ {2 − p(h1)}α + {2 − p(h2)}α − 1

for all h1, h2 ∈ X and 0 ≤ α ≤ 1;
(vi) {2 − p(h1 + h2)}α ≥ {2 − p(h1)}α + {2 − p(h2)}α − 1

for all h1, h2 ∈ X and α < 0.

2.5. Integrated Concurrence Probabilities and Area of
Concurrence Cell

As we will see in Sections 4 and 6, one can provide simple esti-
mators of the bivariate concurrence probabilities and establish
bivariate concurrence probability maps s .→ p(s0, s) centered at
a given location s0. Such maps show how fast the dependence in
extremes decreases when moving away from s0. A drawback of
this approach is that one may produce one such map for every
choice of an origin s0 and the choice of an origin is hence quite
arbitrary. To bypass this issue, we propose to consider the inte-
grated concurrence probability

I(s0) =
∫

s∈X
p(s0, s)ds, s0 ∈ X .

Intuitively, this quantity measures how fast the dependence
in extremes decreases when moving away from s0. Interestingly,
it can be related to the notion of concurrence cell. Consider the
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spectral representation (7) and recall that we have a concurrence
of extremes at sites s0 and s if η(s0) = ϕ(s0) and η(s) = ϕ(s), for
the same ϕ ∈ '. Let C(s0) denotes the random set of all sites s
that are in a concurrence relationwith s0. This set will be referred
to as the concurrence cell containing the site s0.

Proposition 3. For any site s0 ∈ X , let |C(s0)| be the
d-dimensional volume ofC(s0). We have

E{|C(s0)|} = I(s0) and

var{|C(s0)|} =
∫

X 2
{p(s0, s1, s2) − p(s0, s1)p(s0, s2)}ds1ds2.

Proof. Observe that the concurrence probability satisfies
p(s0, s) = E{1C(s0)(s)} and that the volume of the concur-
rence cell is given by |C(s0)| =

∫
X 1C(s0)(s)ds. The formula

E{|C(s0)|} = I(s0) follows by applying the Tonelli–Fubini’s
theorem. Similarly for the variance, we have

var{|C(s0)|}
= E{|C(s0)|2} − [E{|C(s0)|}]2

= E
{∫

X 2
1C(s0)(s1)1C(s0)(s2)ds1ds2

}
− I(s0)2

=
∫

X 2
p(s0, s1, s2)ds1ds2 −

∫

X 2
p(s0, s1)p(s0, s2)ds1ds2.

!

We will provide and discuss in Section 6 some maps of
the integrated concurrence probability s0 .→ I(s0) that allow to
evaluate at each location s0 the dependence in extremes around
s0. For a detailed study of the properties of the concurrence cells
associated with amax-stable random field and of the tessellation
of the entire domain generated by the concurrence cells, please
refer to the recent work of Dombry and Kabluchko (2017).

3. Extremal Concurrence Probabilities for Specific
Models

In this section, we gather formulas for the extremal concurrence
probabilities for some popular models of max-stable random
vectors and processes. As we will see, it is not always possible
to get explicit formulas, and in such situations, we propose to
use Monte Carlo approximation methods. Proofs related to this
section are given in the supplementary material and mainly rely
on Theorem 2.

3.1. Closed-Form Expressions

Example 1 (Logistic model). Consider the k-variate logistic
model, that is, with cumulative distribution

F(z1, . . . , zk) = exp

⎧
⎨

⎩−

⎛

⎝
k∑

j=1

z−1/α
j

⎞

⎠
α⎫⎬

⎭ ,

0 < α ≤ 1, z1, . . . , zk > 0.

Its concurrence probability is given by

p(s1, . . . , sk) =
k−1∏

j=1

(1 − α/ j).

Recall that independence is reached when α = 1 while perfect
dependence occurs as α ↓ 0 and, as expected, for such situations
we have p(s1, . . . , sk) = 0 and p(s1, . . . , sk) = 1, respectively.

Example 2 (Max-linear model). Consider the max-linear model
η(s) = maxm=1,...,n ϕm(s)Zm, whereZ1, . . . ,Zn are independent
standard unit Fréchet random variables and some nonnegative
functions ϕm(s), m = 1, . . . , n, such that

∑n
m=1 ϕm(s) = 1 for

all s ∈ X . We have
(i) The concurrence probability equals

p(s1, . . . , sk) =
n∑

ℓ=1

pℓ(s1, . . . , sk),

pℓ(s1, . . . , sk) =
{ n∑

m=1
max
j=1,...,k

ϕm(s j)
ϕℓ(s j)

}−1

, (20)

with the convention that 0/0 = 0, a/0 = ∞ if a > 0.
(ii) The probability that component ℓ dominates at sites

s1, . . . , sk is given by the term pℓ in (20), that is,

pℓ(s1, . . . , sk) = P
{
η(s j) = ϕℓ(s j)Zℓ, j = 1, . . . , k

}
.

(21)

Example 3 (Chentsov random fields). Suppose that the process
Y (s) = 1A(s), where A ⊂ R d is a random set. Then, by analogy
with the theory of symmetric α-stable process (Samorodnitsky
and Taqqu 1994, chap. 8), we introduce the max-stable process

η(s) = max
i≥1

ζi1Ai (s), s ∈ X ,

where Yi ≡ 1Ai are independent copies of Y ≡ 1A. The process
η will be referred to as a Chentsov-type max-stable random field
on X .

For a Chentsov-type max-stable process, we have

p(s1, . . . , sk) = P ({s1, . . . , sk} ⊂ A | {s1, . . . , sk} ∩ A ̸= ∅) ,

(22)
or less formally, the extremal concurrence probability is the con-
ditional probability that all the sites s1, . . . , sk are covered by the
random set A given that at least one of the sites is covered.

Example 4 (Extremal processes). Recall that themax-stable pro-
cess {η(s) : s ∈ [0, 1]} is an extremal process if it has stationary
and independent max-increments, that is,

{η(s1), . . . , η(sk)}
d= [s1Z1,max{s1Z1, (s2 − s1)Z2}, . . . ,
max{s1Z1, . . . , (sk − sk−1)Zk}],

where 0 < s1 < · · · < sk and Z1, . . . ,Zk are independent unit
Fréchet random variables (see, e.g., chap. 4.3 in Resnick 1987).
It can be shown that

{η(s), s ∈ [0, 1]} d=
{
max
i≥1

ζi1[Ui,1](s), s ∈ [0, 1]
}

,

where Ui’s are independent U (0, 1) random variables. Using
our previous result on Chentsov-type random fields, with A :=
[U, 1] where U ∼ U (0, 1), we have for all 0 < s1 < · · · < sk ≤
1

p(s1, . . . , sk) = P ({s1, . . . , sk} ⊂ [U, 1])
P ({s1, . . . , sk} ∩ [U, 1] ̸= ∅)

= P(U ≤ s1)
P(U ≤ sk)

= s1
sk

.
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This result is not surprising since for this simple case, extremes
are concurrent at locations 0 < s1 < · · · < sk < 1 if η(s) has no
jumps in the interval [s1, sk]. Hence using the independence and
stationarity of the max-increments, the probability of the latter
event is P{s1Z1 ≥ (sk − s1)Z2} = s1/sk, where Z1 and Z2 are two
independent standard unit Fréchet variables.

Example 5 (Indicator moving maxima). In the context of (15), if
fs(u) = 1As (u), for some sequence of measurable deterministic
sets As, by using (16), we obtain as in (1) that

p(s1, . . . , sk) =
ν(∩ j=1,...,kAsj )

ν(∪ j=1,...,kAsj )
. (23)

In the simple case fs(u) = 1A(u − s), that is, As = s + A with
some deterministic set A, where ν is the Lebesgue measure on
R d , relation (23) implies

p(s, s + h) = p(h) = |A ∩ (h + A)|
|A ∪ (h + A)|

= cA(h)

2|A| − cA(h)
,

where |A| denotes the d-dimensional volume of A and cA(h) =
|A ∩ (h + A)|. The latter function and hence the extremal con-
currence probability function p(h) can then be obtained in
closed form for many different sets. For example, in the case η is
isotropic, that is, A = {s ∈ R d : ∥x∥ ≤ r} is the centered ball of
radius r > 0 in Euclidean space, using the formula for the vol-
ume of the cap, we obtain

cA(∥h∥) = CdrdB(d+1)/2,1/2

{∥h∥(2r − ∥h∥)

2r2

}
,

Cd = πd/2

/(1 + d/2)
,

where Ba,b(x) = B(a, b)−1 ∫ x
0 ua−1(1 − u)b−1du is the cumula-

tive distribution function of a Beta(a, b) random variable.

3.2. Numerical Approximations

It may happen that for some parametric max-stable models,
explicit forms for extremal concurrence probabilities are not
available but hopefully it is often possible to use Monte Carlo
methods to approximate the theoretical extremal concurrence
probabilities with arbitrary precision. A naive strategy would
consist in using (12) to devise a Monte Carlo estimator, but it
is wiser to take advantage of the closed forms of max-stable pro-
cesses cumulative distributions, that is,

P
{
η(s j) ≤ z j, j = 1, . . . , k

}
= exp{−Vs1,...,sk (z1, . . . , zk)},

z1, . . . , zk > 0,

where Vs1,...,sk is an homogenous function of order −1. Rewrit-
ing (12), we found

p(s1, . . . , sk)

= EY

([
− logPη̃

{
η̃(s j) ≤ Y (s j), j = 1, . . . , k

}]−1
)

= EY

([
Vs1,...,sk {Y (s1), . . . ,Y (sk)}

]−1
)

(24)

which can easily be estimated by sampling independent copies
ofY and computing the sample mean.We can oftenmake use of

antithetic variables to get more precise estimates. Note that spe-
cific choice of the spectral processY can lead to better strategies
as we will illustrate in the following examples.

Example 6 (Brown–Resnick model). Let η be a Brown–Resnick
stationary random field on X driven by a Gaussian process
(Kabluchko, Schlather, and deHaan 2009). That is, the processes
Yi in (5) are equal in distribution to

Y (s) = exp{W (s) − γ (s)}, s ∈ X , (25)

where W is a zero mean Gaussian random field with
stationary increments and semivariogram γ , that is,
2γ (h) = E{W (h)2} = E[{W (s + h) −W (s)}2], s, h ∈ X .

For this model, the bivariate extremal concurrence probabil-
ity function is given by

p(o, h) = E(['(Z)+ exp{γ (h)−
√
2γ (h)Z}'{

√
2γ (h)−Z}]−1),

(26)

where Z ∼ N(0, 1) has the standard normal distribution with
cumulative distribution function '. As expected p(o) = 1 and
p(h) → 0 as ∥h∥ → ∞ provided that the semivariogram is
unbounded, that is, γ (h) → ∞ as ∥h∥ → ∞.

Example 7 (Schlather and extremal-t processes). Let η be an
extremal-t process onX , that is, the processesYi in (5) are equal
in distribution to

Y (x) = cν max{0,W (s)}ν,

cν =
√

π2−(ν−2)/2/

(
ν + 1
2

)−1

s ∈ X ,

where ν ≥ 1 and W is a stationary standard Gaussian process
with correlation function ρ. The Schlather process is obtained
when ν = 1.

The corresponding extremal concurrence probability func-
tion p(o, h) equals

E
([

Tν+1(T ) + {ρ(h) + σ (h)T}−νTν+1

×
{

− ρ(h)

σ (h)
+ 1

σ (h)(ρ(h) + σ (h)T )

}]−1

1{ρ(h)+σ (h)T>0}

)
, (27)

where σ (h) =
√

{1 − ρ(h)2}/(1 + ν) and T is a Student ran-
dom variable with ν + 1 degrees of freedom and cumulative dis-
tribution function Tν+1.

Remark 4. The previous two examples provide useful tools for
statistical inference. In practice, one can fit a Brown–Rescnick
or extremal-t max-stable process model to data by using, for
example, the composite likelihood approach of Padoan, Ribatet,
and Sisson (2010). Then, the concurrence probability function
is readily obtained via Monte Carlo methods from (26) or (27).

4. Statistical Inference and Asymptotic Properties

4.1. Sample Concurrence Probability Estimators

We define a sample concurrence probability estimator by divid-
ing data into blocks and study its basic properties as well as the
optimal choice of the block-size.
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Let Xi = {Xi(s j) : j = 1, . . . , k}, i = 1, . . . , n, be random
vectors in R k, k ≥ 2. Partition the data into nonoverlapping
blocks of size m < n, and define the sample concurrence prob-
ability estimator

p̂m ≡ p̂m(X1, . . . ,Xn)

= 1
[n/m]

[n/m]∑

r=1
1{sample concurrence in block r

}, (28)

where, as in (2), we have

{sample concurrence in block r}

=
{

max
i=1,...,m

Xi+(r−1)m = Xℓ+(r−1)m for some ℓ = 1, . . . ,m
}

,

that is one vector in the rth block dominates the others.
Assuming that X1, . . . ,Xn are independent and identically

distributed, the above estimator is the sample mean of [n/m]
independent Bernoulli(pm) random variables, where pm is as
in (3) with n replaced bym. Therefore,

E( p̂m) = pm, var( p̂m) = pm(1 − pm)

[n/m]
,

that is, p̂m is a unbiased estimator for pm.
As argued in the introduction, a major drawback of the sam-

ple concurrence probability pm is that it depends on the sam-
ple size m and it is thus more sensible to focus on the limiting
extremal concurrence probability p = p(s1, . . . , sk). If X in the
max-domain of attraction of some multivariate max-stable dis-
tribution, we know from Corollary 1 that pm → p as m → ∞.
However, the sample concurrence probability estimator p̂m is
biased for pwith mean squared error

MSE( p̂m) = (pm − p)2 + pm(1 − pm)

[n/m]
. (29)

We encounter here a typical bias-variance trade off: while the
bias pm − p vanishes as m → ∞, the variance grows asymp-
totically linearly with m with rate p(1 − p)m/n. The optimal
block size m in terms of mean squared error depends strongly
of the behavior the bias function pm − p which in general can-
not be evaluated except if we assume amax-domain of attraction
condition—see Section 4.2.

Still, assuming a particular rate of decay for the bias, we can
study the bias-variance trade off further. Assuming 0 < p < 1
and pm − p ∼ cm−δ for some c, δ > 0, we obtain

MSE( p̂m) =
(c
mδ

)2
+ p(1 − p)m

n
+ o(m−2δ ) + o(m/n).

Taking the derivative with respect tom, we see that the minimal
MSE corresponds to the optimal block size

mopt ∼
{

2δc2n
p(1 − p)

}1/(2δ+1)

, n → ∞. (30)

The corresponding mean squared error is MSE( p̂mopt ) ∝
n−2δ/(2δ+1).

The asymptotic behavior of the estimator p̂m is given in the
following theorem.

Theorem 4. Assume pm − p ∼ cm−δ for some constants c,
δ > 0.

(i) Suppose 0 < p < 1 and let m = m(n) be such that
n/m(n) → ∞ and m(n)/n1/(2δ+1) → λ ∈ (0,∞], as
n → ∞. Then, we have
√
n/m( p̂m−p) −→ N

{ c
λδ+1/2 , p(1−p)

}
, n → ∞,

with 1/∞ being interpreted as zero.
(ii) Suppose that p = 0 and let m = m(n) be such that

n/m(n) → ∞ and m(n)/n1/(δ+1) → λ ∈ (0,∞] as
n → ∞. If λ < ∞, then

(n/m) p̂m −→ Poisson(c/λδ+1), n → ∞.

Otherwise, if λ = ∞, then P( p̂m = 0) → 1 as n → ∞.

The proof can be found in the supplementary materials.

Remark 5. In part (i) of Theorem 4, the case λ < ∞ yields the
optimal rate of convergence nδ/(2δ+1) but a bias term cλ−δ−1/2

appears in the limit. On the other hand, the rate sub-optimal
choice λ = ∞ yields unbiased normal limit.

4.2. Behavior UnderMax-Stability

In the previous section, we assumed that the bias pm − p decays
as a power function. This can indeed be assumed for max-stable
data, as shown in the following proposition.

Proposition 4. Assume that X is max-stable.
(i) The bias pm − p is nonincreasing in m and satisfies

0 ≤ pm − p ≤ (1 − p)/m, m ≥ 1.
(ii) In the bivariate case k = 2, we have pm − p =

(1 − p)/m,m ≥ 1.
(iii) If 0 < p < 1, then pm − p ∼ cm−δ asm → ∞, for some

δ ∈ {1, . . . , k − 1} and c ∈ (0, 1 − p].

The proof relies on an exact formula for (pm − p) via the dis-
tribution of the extremal hitting scenario and is given in the sup-
plementary material.

Note that in part (iii) of Proposition 4, the case δ ≥ 2 cor-
responds to peculiar dependence structure, the standard case
being rather δ = 1, that is, pm − p ∼ cm−1 with 0 < c < 1 −
p—see Lemma 1.1 in the supplement. According to (30), the
optimal block size is then of order n1/3 and the minimum MSE
of order n−2/3. For the rate optimal block size m ∼ λn1/3, The-
orem 4 part (i) with δ = 1 and c > 0 yields

n1/3( p̂m − p) −→ N
{ c
λ3/2 , p(1 − p)

}
, n → ∞.

Note that in all cases, the bias pm − p is dominated by 1/m
so that the choice of block size m = n1/3 is conservative and
ensures an MSE of order n−2/3.

In the bivariate max-stable case, the bias is exactly pm − p =
(1 − p)/m (see part ii) of Proposition 4. This allows us to pro-
pose a bias correction and, in fact, to reach the parametric rate
of convergence of order

√
n.

Corollary 3. In the bivariate max-stable case, the estimator

p̃m = mp̂m − 1
m − 1
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is unbiased for p. Furthermore, for any fixedm ≥ 2,
√
n( p̃m − p) −→ N

{
0,m(1 − p)(p+ 1/(m − 1))

}
.

The proof is similar to that of Theorem 4. A routine calcu-
lation yields that in this case the variance-optimal choice of the
block size is the largest integer m, such that m(m − 1) < 1/p,
that is,mopt ≈ 1 + 1/√p.

4.3. The Permutation Bootstrap

We propose here a methodological improvement of the sam-
ple concurrence probability estimator p̂m based on permutation
bootstrap. The idea is to compute the estimator p̂m for several
independent random permutations of the sample X1, . . . ,Xn.
Then the average of the resulting estimator would have a lower
variance and the same mean pm.

Formally, this procedure is justified by the following sim-
ple observation based on the Rao–Blackwell theorem. Con-
sider the lexicographic linear order in R k, denoted ≺, and let
X(1) ≺ X(2) ≺ · · · ≺ X(n) be the sorted sample obtained from
X1, . . . ,Xn. The independence of the Xi’s and the continuity
of their marginals entails that the above ordering is strict with
probability one. Let T{X1, . . . ,Xn} = (X(1), . . . ,X(n)). It can be
shown that T is a sufficient statistic for the parameter pm =
pm(s1, . . . , sk) and the Rao–Blackwell theorem implies the fol-
lowing proposition. Its proof can be found in the supplementary
material.

Proposition 5. For p̂⋆
m = E( p̂m | T ) we have E( p̂⋆

m) = pm and

E{( p̂⋆
m − pm)2} ≤ E{( p̂m − pm)2}. (31)

Moreover, we have

p̂⋆
m = 1

n!
∑

σ∈Sn

p̂m{Xσ (1), . . . ,Xσ (n)}, (32)

where Sn denotes the set of all permutations of {1, . . . , n}. An
alternative expression for p̂⋆

m is

p̂⋆
m = 1(n

m
)

n∑

i=1

(
di

m − 1

)
, (33)

where di =
∑n

k=1 1{Xk<Xi} and
( di
m−1

)
= 0 if di < m − 1.

The above result shows that the estimator p̂⋆
m is superior to p̂m

in terms of mean squared error. From a numerical point of view,
formula (33) is much more computationally efficient than (32).
We shall refer to p̂⋆

m as to the sample concurrence probability
bootstrap estimator. In Section 5, we provide simulations show-
ing that the permutation bootstrap estimator p̂⋆

m has a signifi-
cantly smaller variance than p̂m and should hence be preferred.
However, if the assumption of independent and identically dis-
tributed observations does not hold, the permutation bootstrap
should be used with caution: simulations show that in presence
of a trend, the permutation bootstrap can suffer from a signifi-
cant bias—see Section 5.5.

4.4. A Connection to the Kendall’s τ Estimator

As indicated in Corollary 3, in the case of max-stable data, the
bias of the bivariate sample concurrence estimator can be cor-
rected. Using the same trick again, in the case of pairwise con-
currence we propose the following unbiased modification of
p̂⋆
m:

p̃⋆
m = mp̂⋆

m − 1
m − 1

. (34)

Surprisingly, whenm = 2, the resulting estimator is nothing
but the Kendall’s τ .

Corollary 4. The estimator p̃⋆
2 = 2 p̂⋆

2 − 1 is equal to the sample
Kendall’s τ

τ̂ = 2
n(n − 1)

∑

1≤k<l≤n

× sign{Xk(s1) − Xl (s1)}sign{Xk(s2) − Xl (s2)}. (35)

Observe that in the bivariate max-stable case, p̃⋆
2 is an unbi-

ased estimator, so that p = E[ p̃⋆
2] = E[τ̂ ] = τ . We thus recover

Theorem 3 with a different proof.

Proof of Corollary 4. Whenm = 2, Equation (33) reduces to

p̂⋆
2 = 2

n(n − 1)

n∑

i=1

di,

and corresponds to the proportion of “concordant pairs.” Since
the Kendall’s τ is equal to the difference of the proportions of
concordant and discordant pairs, we have τ̂ = p̂⋆

2 − (1 − p̂⋆
2) =

p̃⋆
2. !

The sample Kendall’s τ is known to be asymptotically normal
(Dengler 2010, Theorem 4.3)

√
n(τ̂ − τ ) −→ N(0, σ 2

τ ),

σ 2
τ = 15 var[Fs1,s2{X (s1),X (s2)} − Fs1{X (s1)} − Fs2{X (s2)}].

(36)

Although the asymptotic variance σ 2
τ is hard to evaluate as it

requires knowledge of the dependence structure, in practice it
can be accurately and consistently estimated using Jackknife
(Schemper 1987), that is, by taking the empirical variance of the
jackknife estimates

τ̂−ℓ = 1
(n − 1)(n − 2)

∑

1≤i, j≤n
i, j ̸=ℓ

sign{Xi(s1) − Xj(s1)}

× sign{Xi(s2) − Xj(s2)}

= 1
(n − 1)(n − 2)

[
n(n − 1)τ̂ − 2

n∑

i=1

sign{Xi(s1)

−Xℓ(s1)}sign{Xi(s2) − Xℓ(s2)}
]
,

where ℓ = 1, . . . , n. That is,

σ̂ 2
τ = 1

n

n∑

ℓ=1

(τ̂−ℓ − τ̂ )2 → σ 2
τ ,
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in probability. This implies that the classic large sample con-
fidence intervals based on (36) with στ replaces by σ̂τ are
consistent.

4.5. Hypothesis Testing

Motivated by the application in Section 6, we want to assess
whether the concurrence probability varies over time. Let
p(s1, s2, t ) be the concurrence probability for locations s1, s2 ∈
X and time t ∈ T . Given two disjoint time periods T1,T2 ⊆ T ,
assume that p(s1, s2, t ) = p1(s1, s2) for all t ∈ T1 and similarly
for the time period T2. Then one might be interested in testing

H0 : p1(s1, s2) = p2(s1, s2) H1 : p1(s1, s2) ̸= p2(s1, s2).

Using (36), it is straightforward to derive such a statistical test
since, under the null hypothesis, we have

T = p̂1(s1, s2) − p̂2(s1, s2)√
σ̂ 2
1 + σ̂ 2

2

d−→ N(0, 1), n → ∞,

where p̂1(s1, s2), p̂2(s1, s2), σ̂ 2
1 , and σ̂ 2

2 are, respectively, the con-
currence probability estimators for the time periods T1 and T2
and their corresponding estimated variances—obtained using
the Jackknife procedure introduced above.

Remark 6. Note however that deriving a statistical test to assess
whether the area of concurrence cell varies in time ismuchmore
complicated since it requires the characterization of the distribu-
tion of

∫
s∈X p̂(s0, s)ds, which is beyond the scope of the present

work.

5. Simulation Study

In this section, we analyze the performance of the sample
concurrence probability estimators p̂m, p̂⋆

m, and p̃⋆
m defined

in (28), (33), and (34), respectively, and that of the Kendall’s

τ estimator τ̂ defined in (35). We discuss the role of the
max-stability assumption and focus mainly on the bivariate
case. Higher order concurrence probabilities are discussed in
Section 5.4.

5.1. The Effect of the Permutation Bootstrap

We first focus on the sample concurrence probability esti-
mators, p̂m and its permutation bootstrap version p̂⋆

m. Their
performance are assessed with respect to the block size m and
the sample size n. We use here observations from a max–stable
Brown– Resnick model and use the exact simulation method-
ology of Dombry, Engelke, and Oesting (2016). Figure 2 shows
the evolution of the root mean squared error as the block size
grows. As expected, both estimators become increasingly more
efficient as the sample size grows and, as expected from (31),
the permutation estimator p̂⋆

m is more efficient than p̂m, inde-
pendently of the block sizem and the sample size n. The circles
on the plot indicate the asymptotically optimal block size
in (30), which are valid only for max-stable data. As expected
the observed optimal block sizes are in good agreement with
the theoretical ones. In practice, however, since the data are
not exactly max-stable, we recommend using slightly larger
values ofm so as to ensure that the block-maxima are closer to a
max-stable model but also to take into account that data usually
exhibit serial dependence, for example, daily observations.

5.2. Robustness of Kendall’s τ With Respect to
Max-Stability

The consistency and asymptotic normality of Kendall’s τ esti-
mator τ̂ for bivariate concurrence probability assume that the
observations are taken from a max-stable model. To assess
the effect of max-stability, we perform a simulation study
with observations that are not max-stable but only in the

Figure . Evolution of the root mean squared error for p̂m (left) and p̂⋆
m (right) as the block sizem and the sample size n increase. These estimates were obtained from

Monte Carlo samples sampled from a Brown–Resnickmodel with semivariogram γ (h) = h/1.627. This semivariogramwas chosen such that the theoretical extremal
concurrence probability is p(h) = 0.5 when h = 1. The points indicate the optimal block sizes as defined by () and their corresponding optimal root mean squared
error ().
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Figure . Evolution of the root mean squared error for τ̂ as the theoretical extremal concurrence probability p and the number of spectral function n0 in () increase.
These estimates were obtained from Monte Carlo samples of size nwith, from left to right, n = 25, 50, 100, 500.

max-domain of attraction. Sampling from processes in the
max-domain of attraction can be done in various ways, we
propose here the following methodology that allows to control
the extent to which the model differs from a max-stable one.
Consider the partial maxima

η̃n0 (s) = 1
n0

max
i=1,...,n0

U−1
i Yi(s), s ∈ X , (37)

where Yi are as in (5), U1, . . . ,Un0 independent U (0, 1) ran-
dom variables and for some suitable n0 ∈ N. By construction,
η̃n0 belongs to the max-domain of attraction of η in (5) and
in some sense can be viewed as a truncation of the spectral
representation in (5) (see, e.g., the proof of Proposition 3.1
in Stoev and Taqqu 2005). The larger the value of n0, the closer
the distributions of η̃n0 and η.

Figure 3 shows the evolution of the root mean squared error
as the number of spectral functions n0 in (37) and the theoret-
ical extremal concurrence probability increase. As expected, as
the sample size n grows, the estimator τ̂ becomes much more
efficient. Interestingly, for small sample sizes, τ̂ appears to be
fairly robust to the lack of max-stability in the data, that is,
n0 < ∞. This is not true anymore for larger sample sizes since,
as expected, τ̂ becomes increasingly more efficient as the num-
ber of spectral functions increases.

5.3. Comparison of the Different Estimators

We compare the performance of the sample concurrence proba-
bility estimators p̂⋆

m and p̃⋆
m in (33) and (34) and the Kendall’s τ

estimator τ̂ in (35). The sample concurrence estimators p̂⋆
m and

p̃⋆
m can be used for observations in the max-domain of attrac-

tion, provided the block size m = m(n) scales suitably with
respect to the number of observations. To compare the two types
of estimators on a fair basis, we analyze their behavior when the
simulated data are either perfectly max-stable or merely in the
max-domain of attraction.

Figure 4 shows boxplots of the permutation bootstrap sam-
ple concurrence estimator p̂⋆

m and its unbiased version p̃⋆
m, as

well as the Kendall’s τ estimator τ̂ , based on 2000 Monte Carlo
realizations of both a Brown–Resnick and extremal-t models.
Recall that we focus here on pairwise concurrence probabili-
ties. As expected, the variability of all estimators decreases as

the sample size grows; the Kendall’s τ estimator being the most
precise one. Since the simulated data are max-stable, we can see
that the sample concurrence probability estimator is biased even
when the sample size is large while the remaining two estimators
are, as expected, unbiased. Overall the Kendall’s τ appears to be
the best estimator provided that the data are max-stable.

To corroborate this finding, Table 1 reports Monte Carlo
sample means and standard deviations of these estimators as
the assumption of max-stability becomes more reasonable, that
is, as the number n0 of spectral functions in (37) grows. As
expected, when the max-stability assumption is most unreason-
able, that is, n0 = 1, all estimators show a substantial bias with
the extremal concurrence probability estimator τ̂ having the
largest bias while the unbiased sample one p̃⋆

m the lowest. As the
assumption of max-stability becomes increasingly more accu-
rate, the bias of the unbiased sample concurrence and extremal
concurrence estimators decrease. When this assumption holds
exactly (indicated by n0 = ∞), both of these estimators exhibit
essentially no bias as stipulated by the theory and Figure 4. The
sample concurrence probability estimator appears to be biased
in all situations—the bias being less significant as the number of
spectral functions is larger. Interestingly, whatever the estimator
considered, the bias and variance appear to increase as the
theoretical extremal concurrence probability value p becomes
smaller. Overall the extremal concurrence probability estimator
τ̂ in (35) has the lowest variability.

5.4. Simulation Study for Higher Order Concurrence
Probabilities

For higher order concurrence probabilities, that is, p(s1, . . . , sk)
with k ≥ 3, estimation relies on the sample concurrence estima-
tor p̂m and its bootstrap version p̂∗

m. The Kendall’s τ estimator τ̂

and the unbiased version p̃m and p̃∗
m of the sample concurrence

estimators can be applied in the bivariate case k = 2 only (see
Theorem 3 and Corollary 3).

Remark 7. Throughout the article, we put an emphasis on the
bivariate case as this specific case is likely to be the most under-
standable in practice—for example, using the integrated con-
currence probabilities of Proposition 3. However higher order
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Figure . Boxplots of the Kendall’s τ estimator τ̂ (red, left), and the bootstrap p̂⋆
m (green/middle) and unbiased bootstrap p̃⋆

m (blue/right) concurrence probability estima-
tors at distance lags h = 1, 2, 3, 4. The boxplots were obtained from  independent estimates usingmax-stable data. From left to right: the sample size is, respectively,
, , , and . The top panel corresponds to an extremal-t model with ν = 5, and correlation function ρ(h) = exp(−h/10). The bottom panel corresponds to a
Brown–Resnickmodel with semivariogram γ (h) = h/3. For each panel, the solid line represents the corresponding theoretical extremal concurrence probability function.
Throughout this simulation study the block size is held fixed tom = 10, independently of the sample size n.

concurrence probabilities might still be of interest, for example,
to compute the variance of the volume of the concurrence
cell.

Estimation of high order concurrence probabilities is
straightforward using estimator p̂⋆

m. Table 2 summarizes the
results of a simulation study based on a k-variate max-stable
logistic model with dependence parameter α = 0.1, 0.5, 0.9
and k = 2, 10, 100. From Example 1, we have p(s1, . . . , sk) =∏k−1

j=1(1 − α/ j) so that pk → 0 as k → ∞. We observe that
p̂⋆
m is able to estimate p(s1, . . . , sk) without any severe bias

even in large dimension. However in the most critical situation,
that is, α ≈ 1 and k ≫ 1, the standard errors are typically of
the same order as p(s1, . . . , sk). Another simulation study (not

presented here) with α = α(k) depending on k in such a way
that p(s1, . . . , sk) = 0.5 reveals that the estimation of k-variate
extremal concurrence probabilities is just as efficient as in the
bi-variate case.

Although the previous simulation study gives some insights
about the behavior of the estimator in large dimension, themax-
stable logistic model is not appropriate for modeling spatial
extremes. We now investigate the case of infill asymptotics of
a compact set K ⊂ X . We focus on a sequence K∞ := {sk, k ∈
N} which is dense in K, that is, such that K = K∞. Then, it
follows that the sets Kk := {s1, . . . , sk} → K, as k → ∞ in the
sense of the Fell, Painlevé–Kuratowski as well as in the Wijs-
man topologies, since all these topologies on closed sets coin-
cide in Euclidean spaces (see, e.g., Theorem B.13 on p. 401 in

Table . Performance of the bootstrap ( p̂⋆
m), unbiased bootstrap ( p̃⋆

m) concurrence probability estimators and the Kendall’s τ (τ̂ ) estimator. The table reports the sample
mean and the standard deviation in parentheses based on Monte Carlo replicates. The data are either simulated from an extremal-t model with correlation function
ρ(h) = exp(−h/10) and ν = 5 degrees of freedom or from its truncated representation with n0 extremal functions. Throughout this simulation study the block size is
held fixed tom = 10, independently of the sample size n.

p = 0.25 p = 0.50 p = 0.75

p̂⋆
m p̃⋆

m τ̂ p̂⋆
m p̃⋆

m τ̂ p̂⋆
m p̃⋆

m τ̂

Sample size n = 20
n0 = 1 0.41 (0.24) 0.35 (0.26) 0.47 (0.13) 0.64 (0.22) 0.60 (0.24) 0.71 (0.09) 0.83 (0.15) 0.81 (0.17) 0.87 (0.05)
n0 = 10 0.34 (0.24) 0.27 (0.25) 0.31 (0.14) 0.57 (0.23) 0.52 (0.26) 0.58 (0.12) 0.79 (0.17) 0.77 (0.19) 0.80 (0.07)
n0 = 15 0.33 (0.24) 0.27 (0.25) 0.30 (0.15) 0.56 (0.23) 0.52 (0.26) 0.56 (0.12) 0.78 (0.17) 0.76 (0.19) 0.78 (0.07)
n0 = ∞ 0.33 (0.24) 0.27 (0.25) 0.25 (0.15) 0.55 (0.24) 0.50 (0.26) 0.50 (0.13) 0.77 (0.18) 0.75 (0.20) 0.75 (0.08)

Sample size n = 50
n0 = 1 0.41 (0.13) 0.35 (0.14) 0.47 (0.08) 0.65 (0.10) 0.61 (0.12) 0.71 (0.05) 0.84 (0.07) 0.82 (0.07) 0.87 (0.03)
n0 = 10 0.34 (0.13) 0.26 (0.14) 0.31 (0.09) 0.57 (0.12) 0.52 (0.13) 0.57 (0.07) 0.79 (0.08) 0.76 (0.09) 0.80 (0.04)
n0 = 15 0.33 (0.13) 0.25 (0.14) 0.29 (0.09) 0.56 (0.12) 0.51 (0.13) 0.56 (0.07) 0.78 (0.08) 0.76 (0.09) 0.79 (0.04)
n0 = ∞ 0.32 (0.13) 0.25 (0.14) 0.24 (0.09) 0.54 (0.12) 0.49 (0.14) 0.50 (0.08) 0.77 (0.09) 0.74 (0.09) 0.75 (0.05)

Sample size n = 100
n0 = 1 0.41 (0.08) 0.35 (0.09) 0.46 (0.06) 0.65 (0.07) 0.61 (0.07) 0.71 (0.03) 0.83 (0.04) 0.82 (0.04) 0.87 (0.02)
n0 = 10 0.34 (0.09) 0.26 (0.10) 0.31 (0.06) 0.57 (0.08) 0.52 (0.09) 0.57 (0.05) 0.78 (0.05) 0.76 (0.05) 0.80 (0.03)
n0 = 15 0.33 (0.09) 0.26 (0.10) 0.29 (0.06) 0.56 (0.08) 0.51 (0.09) 0.55 (0.05) 0.78 (0.05) 0.76 (0.06) 0.78 (0.03)
n0 = ∞ 0.33 (0.09) 0.25 (0.10) 0.25 (0.07) 0.55 (0.08) 0.50 (0.09) 0.50 (0.05) 0.78 (0.05) 0.75 (0.06) 0.75 (0.03)
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Table . Performance of the permutation bootstrap estimator p̂⋆
m . The table reports the sample mean and the standard deviation in parentheses based on  Monte

Carlo replicates. The data are simulated from amax-stable logistic distribution in dimension kwith dependence parameterα ∈ {0.1, 0.5, 0.9}. Throughout this simulation
study the block size is held fixed tom = 10, independently of the sample size n.

α = 0.1 α = 0.5 α = 0.9

k = 2 k = 10 k = 100 k = 2 k = 10 k = 100 k = 2 k = 10 k = 100
n (p = 0.90) (p ≈ 0.75) (p ≈ 0.60) (p = 0.50) (p ≈ 0.19) (p ≈ 0.06) (p = 0.10) (p ≈ 0.014) (p ≈ 0.0017)

 . (.) . (.) . (.) . (.) . (.) . (.) . (.) . (.) . (.)
 . (.) . (.) . (.) . (.) . (.) . (.) . (.) . (.) . (.)
 . (.) . (.) . (.) . (.) . (.) . (.) . (.) . (.) . (.)
 . (.) . (.) . (.) . (.) . (.) . (.) . (.) . (.) . (.)
 . (.) . (.) . (.) . (.) . (.) . (.) . (.) . (.) . (.)

Molchanov 2005). If the limiting max-stable process has contin-
uous paths (equivalently, its spectral functions are continuous—
see Resnick and Roy 1991), by the monotone convergence the-
orem it follows that

p(s1, . . . , sk) −→ p(K)

= P {for some ℓ ≥ 1 : η(s) = ϕℓ(s), s ∈ K} .

Thus, the limit p(K) is naturally interpreted as the probability
of extremal concurrence over K, see Remark 3.

We illustrate the above convergence by taking η to be a
Brown–Resnick process on X = [0,T ] with γ (s) = s/3 and
Kk = {sn = Tun : n = 1, . . . , k}where {un}n≥1 is a Van der Cor-
put sequence—that is, an equidistributed with low discrepancy
sequence that is dense on [0, 1]. Figure 5 illustrates the perfor-
mance of p̂∗

m(s1, . . . , sk) as a function of k based on n = 1000
independent copies of η and block size m = n1/3 = 10. Point-
wise sample mean and quantiles of order 0.025 and 0.975 are
obtained from a Monte Carlo procedure using 2000 replicates
while the limit theoretical value p(X ) is computed using (17).
We observe that the concurrence probabilities quickly decreases
for k = 2, . . . , 20 and then reach a plateau. Since the block size
is fixed to m = 10, we can observe a moderate bias. This lim-
ited experiment illustrates that concurrence probabilities over
an interval or a region in R d can be positive, and, depending on
the model they could be rather large.

5.5. Model Misspecification: The Effect of a Linear Trend

Motivated by the application on continental US temperatures of
Section 6, and to mimic a global warming effect, we investigate
the impact of a linear trend on the proposed estimators. To this
aim, we consider the time series model given by

Xt (s) = Zt (s) + ct, t = 1, 2, . . . , s ∈ {0, 1},

where the trend c ∈ R 2 and {Zt (0),Zt (1), : t ≥ 1} is a sequence
of independent copies of a max-stable logistic random variable
whose marginal parameters were taken to be in agreement with
that found in our US temperature application—that is, µ = 36,
σ = 1.85, and ξ = −0.18. Two different situations were consid-
ered: the trend coefficients c = (ϵ, ϵ)⊤are both equal and posi-
tive; andwhen the trend coefficients c = (ϵ,−ϵ)⊤have different
signs, for some ϵ > 0.

Figure 6 plots the bias of each estimator as the trend ϵ and
the concurrence probability p(0, 1) vary. Clearly only the sam-
ple concurrence estimator p̃m shows robustness against linear
trends, while the two remaining estimators may be seriously
impacted. Such a behaviorwas expected since p̂m considers sam-
ple concurrence in successive blocks of (small) sizesmwhere it is
likely that the linear trend will have a minor effect. It is not true
anymore for both p̂⋆

m and τ̂ as they compare pairs of observa-
tions that can be far apart in time and for which the linear trend
is likely to have a more pronounced impact.

Figure . Behavior of the permutation bootstrap estimator p̂⋆
m(Kk ) as k → ∞with Kk = {Tun : n = 1, . . . , k} and where {un : n ≥ 1} is the Van der Corput sequence on

[0, 1] and T = 1, 5, 10—left to right. Results are obtained from Monte Carlo replicates of —sample from a Brown–Resnick process with semivariogram γ (h) =
h/3. The (orange) horizontal lines correspond to the theoretical values p(X ) estimated using a Monte Carlo procedure.
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Figure . Impact of a linear trend on the empirical ( p̂m), bootstrap ( p̂⋆
m), and Kendall’s τ (τ̂ ) estimators. The top row shows results for a common trend while the bottom

row investigates the case of opposite linear trends across the variables.

While p̂⋆
m and τ̂ have the smallest variance compared to that

of p̂m, they are the least robust against linear trendmisspecifica-
tion. From amethodological point of view, this suggests a possi-
ble pretreatment of the data to remove any possible linear trend
before using the better estimators p̂⋆

m and τ̂ .

6. Concurrence of Temperature Extremes in
Continental USA

In this section, we apply the developed methodology to esti-
mate the probabilities of concurrence associated with extreme
temperatures—both extreme cold and hot events. The data con-
sist of daily temperature minima and maxima recorded at 424
weather stations over the period 1911–2010. The spatial distri-
bution of these stations is given in Figure 7. This dataset, as a
subset of the United States Historical Climatological Network
(USHCN 2014), was chosen as it meets very high data quality
standards and involves fewer than 2.4% missing values while
spanning the entire territory of continental US. It can be freely
downloaded from http://cdiac.ornl.gov.

To avoid any seasonal influence on our results, we decided
to analyze minima and maxima for each season separately. We
focus on the concurrence of extreme cold (minima) during the
Fall and Winter seasons—generally color-coded in blue; and
extremehot (maxima) during the Spring and Summer seasons—
generally color-coded in red. The right panel of Figure 7 shows
the time series of these seasonal extrema for one particular
weather station: Worland, Wyoming. We can see that all four
time series of seasonal extremes appear to be stationary without
any clear temporal trend. This is in contrast with the generally
accepted trend of about 0.2◦C per decade for average tempera-
tures (Stocker et al. 2013).

Figure 8 plots the estimated spatial distribution of the
extremal concurrence probabilities function for the Fall and
Spring seasons for the time periods 1911–1950 and 1951–2010
and the associated p-values of the hypothesis test of any change
in the pointwise concurrence probabilities between these two
time periods—see Section 4.5. These concurrence probability
maps were obtained by first computing the estimator (35) over
all 423 pairs of stations (s0, s), where s0 denotes the spatial

Figure . Left: Spatial distribution of the  weather stations. The triangle indicates the selected station for the analysis. Right: The seasonal extrema time series for the
selected station.

http://cdiac.ornl.gov
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Figure . Maps of the extremal concurrence probability for theWorland station (triangle) for the Fall (top) and Spring (bottom) seasons. The left panels show results for the
time period – while the middle panels to –. The rightmost panels plot the pointwise p-values relative to the hypothesis test of concurrence probabilities
difference between the two time periods—see Section ..

coordinates of the Worland station, and then interpolated
using thin plate splines (on logit scale) provided by the R
package fields (Nychka et al. 2017). As expected, the highest
concurrence probability occurs in the neighborhood of the
selected station independently of the season. The areal extent
of high concurrence probabilities, however, seems to be larger
for minimum temperatures (cold extremes) than for maximum
temperatures (hot extremes). This finding is consistent with
the physical notion of entropy, that is, when the ambient tem-
perature is higher (Spring and Summer seasons), the entropy
is greater and hence involves less spatial dependence than for
cooler temperatures leading to smaller probability of simultane-
ous extremes. This difference can be also attributed to the fact
that extreme cold temperatures are often due to high-pressure
systems, which tend to linger longer and cover a larger spatial
area than warm fronts giving rise to concurrence of extreme hot
events.

Although the concurrence probability maps for the time
period 1911–1950 and 1951–2010 show very different patterns,

the rightmost panels of Figure 8 suggest that these changes
are only statistically significant on a small fraction of the US
territory. However, these findings have to be nuanced by the
fact that we are plotting pointwise p-values so that we are facing
an infinite-dimensional multiple comparisons problem.

Although Figure 8 displays interesting patterns, it has the
drawback of being dependent on the choice of the origin, that
is, the selected station. However as stated in Section 2.5, it is
possible to bypass this hurdle by focusing on concurrence cell
instead. Figure 9 plots the differences in the spatial distribution
of E{|C(s|} and var{|C(s)|} for the preindustrial period, that
is, 1911–1950, and the postindustrial one, that is, 1951–2010.
Overall we can see that during the last 60 years extremal
concurrence cells appear to be larger and with an increased
variability for cold seasons while it is the opposite for hot
seasons. These findings indicate that today’s climate shows cold
spells that have a larger spatial impact than in the beginning
of the 20th century while hot spells are more localized. Our
results agree with the conclusions drawn by Field et al. (2012)

Figure . Top: Spatial distribution of the expected extremal concurrence cell areas anomalies, that is, the pointwise difference betweenE{|C(s)|} for period – and
period –. Bottom: Spatial distribution of the extremal concurrence cell area variations, that is, the pointwise ratio between var{|C(s)|} for period – and
–. Each column corresponds to one season. From left to right: Fall, Winter, Spring, and Summer.
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Figure . Top: Spatial distribution of the expected extremal concurrence cell area anomalies, that is, the pointwise difference between E{|C(s)|} for El Nio/La Nia years
and La Nada years (left/right). Bottom: Spatial distribution of the extremal concurrence cell area variations, that is, the pointwise ratio between var{|C(s)|} for El Nio/La Nia
years and La Nada years (left/right). The focus here is on winter extremes (temperature minima).

who states that “there is evidence from observations gathered
since 1950 of change in some extremes.” These changes in the
concurrence patterns of summer extremes can be attributed to
global warming since an increase in entropy generally leads to
more “mixing” in the system and hence less dependence leading
to smaller areas of concurrence. The changes in concurrence
patterns of extreme cold events, however, are harder to explain.
They may be triggered by structural changes in important
climatological mechanisms such as the Arctic Oscillation,
for example.

Finally, we consider another cut of the data by stratifying
according to an important climate phenomenon known as the
El Nio Southern Oscillation (ENSO). Positive ENSO (El Nio)
refers to the event of a warm-up of the surface water in the cen-
tral and east-central equatorial Pacific ocean. It is well known
that years with high ENSO have a general warming effect in
North America during the winter season. The opposite effect of
negative ENSO (La Nia) is characterized by a cool-down in the
same area of the Pacific and it generally leads to unusually cold
winters in the northwestern part of the US, northern California
and the north-central states (Graham 1999). Figure 10 plots the
changes in the mean and the variance of the concurrence cell
area. The estimates reported here are the anomalies/variations
compared to the base class “La Nada,” that is, years that are not
labeled as El Nio nor La Nia, for Winter minima. During the
time period 1911–2010, there were, respectively, 29, 25, and 46
winter seasons classified as El Nio, La Nia, and LaNada. Overall,
relative to La Nada, we can see that La Nia (right plots) does not
seem to have an impact on the spatial coverage of winter min-
ima though its variability seems to be a bit more pronounced in

the East coast. On the other hand, El Nio (left plots) seems to
induce more massive and volatile cold extremes over the whole
USA.

7. Discussion

In this article, we introduce a new perspective to multivariate
and spatial extremes based on the fundamental notion of con-
currence. The extremal concurrence probability can be viewed
as a measure of dependence, similar to the popular extremal
coefficient function. It has the advantage, however, of being
readily interpretable as the probability that a single event will
cause the extremes over a region of interest. Theoretical prop-
erties and closed-form expressions of these concurrence proba-
bilities have been established and several estimators have been
proposed. In practice, the bi-variate concurrence probability is
easily interpreted and provides means of computing expected
areas of concurrence cells. Interestingly, for max-stable mod-
els, it reduces to the classic Kendall’s τ . A simulation study has
shown that the proposed estimators work well in practice and
that they give a new insight into the dependence of extremes, as
illustrated with an analysis of the areas of concurrence regions
for temperature extremes in the continental USA.
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