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ä Supplementary material (if any) can be downloaded from

http://mribatet.perso.math.cnrs.fr/teaching.html
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Environmental extremes (2)

Extreme value theory M2 Statistics and Econometrics – 5 / 95

Knowledge of the distribution of environmental extremes might be useful for

ä economic reasons, prevent any severe dammage due to a storm, extremely cold

temperatures, . . . yielding to economic losses;

ä policy management to characterize the potential human losses if some extreme

weather events occur—France 2003.



Financial extremes

Extreme value theory M2 Statistics and Econometrics – 6 / 95



Financial extremes

Extreme value theory M2 Statistics and Econometrics – 6 / 95



Financial extremes

Extreme value theory M2 Statistics and Econometrics – 6 / 95

50

100

se
p−

20
06

dé
c−

20
06

m
ar

−2
00

7

ju
i−

20
07

se
p−

20
07

dé
c−

20
07

m
ar

−2
00

8

ju
i−

20
08

se
p−

20
08

dé
c−

20
08

m
ar

−2
00

9

ju
i−

20
09

se
p−

20
09

dé
c−

20
09

m
ar

−2
01

0

ju
i−

20
10

se
p−

20
10

dé
c−

20
10

m
ar

−2
01

1

ju
i−

20
11

se
p−

20
11

dé
c−

20
11

m
ar

−2
01

2

ju
i−

20
12

se
p−

20
12

dé
c−

20
12

m
ar

−2
01

3

ju
i−

20
13

se
p−

20
13

dé
c−

20
13

m
ar

−2
01

4

ju
i−

20
14

se
p−

20
14

dé
c−

20
14

m
ar

−2
01

5

ju
i−

20
15

se
p−

20
15

dé
c−

20
15

m
ar

−2
01

6

ju
i−

20
16

se
p−

20
16

dé
c−

20
16

m
ar

−2
01

7

ju
i−

20
17

se
p−

20
17

dé
c−

20
17

m
ar

−2
01

8

ju
i−

20
18

Date

S
o
c
ie

te
 G

e
n
e
ra

le
 C

lo
s
in

g
 p

ri
c
e
 (

E
U

R
)



Financial extremes (2)
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Knowledge of the distribution of financial extremes might be useful to

ä be in agreement with the Basel committe, e.g., characterize the value at risk;

ä assess to which extent a given company is “at risk”;

ä derive optimal portfolio management such as extension of the Markowitz

framework.
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ä 1930: Foundations of asymptotic arguments from Fisher and Tippett

ä 1940s: Unification and extension of the asymptotic theory by Gnedenko and von

Mises

ä 1950s: First statistical modelling from asymptotic distribution by Gumbel and

Jenkinson

ä 1960s: Multivariate maxima

ä 1970s: Threshold exceedances

ä 1980s: Extremes for stationary processes, point processes approaches

ä 1990s: Multivariate modelling strategies, Bayesian approaches

ä 2000s: Softwares

ä 2010s: Spatial extremes
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ä Let X1, . . . , Xm
iid∼ F and define the (block) maximum

Mm = max{X1, . . . , Xm}. Clearly we have

Pr(Mm ≤ x) = Pr(X1 ≤ x, . . . , Xm ≤ x)

= Pr(X1 ≤ x)×·· ·×Pr(Xm ≤ x)

= F (x)m .

ä F is unknown so approximate F m with some relevant distribution.

ä As m →∞ we have

F (x)m −→
{

0, F (x) < 1,

1, F (x) = 1,

so Mm
D−→ x+ where x+ = sup{x ∈R : F (x) < 1}. We say that the

limiting distribution is degenerate.
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ä You already met degenerate distribution, e.g., provided E(|X |)<∞,

X̄m =
1

m

m
∑

i=1

Xi
D−→ E(X ), m →∞.

ä Question: How would you get a non degenerate distribution?
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ä You already met degenerate distribution, e.g., provided E(|X |)<∞,

X̄m =
1

m

m
∑

i=1

Xi
D−→ E(X ), m →∞.

ä Question: How would you get a non degenerate distribution?

ä We will just do the same with Mm !
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Example 1. Find suitable (normalizing) sequences such that maxima

of independent random variables from the

i) Exponential(1)

ii) (unit) Fréchet, i.e., Pr(X ≤ x) = exp(−1/x), x > 0

iii) Uniform(0,1)

distributions have non–degenerate limiting distributions.
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Figure 1: Distribution of maxima (left) and normalized maxima (right) with m =
1,7,30,90,365,3650 standard Exponential random variables.
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Definition 1. A distribution H is said to be max-stable if for any

k ∈N∗
H k (x) = H (ak x +bk ),

for some constants ak and bk .

Definition 2. Two distributions F and G are of the same type if there

are constants a > 0 and b ∈R such that G(ax +b) = F (x) for all x ∈R.
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Clearly if a limiting distribution H for normalized maxima exists, it

must be max-stable since as m →∞

Pr

(

Mmk −bmk

amk
≤ x

)

−→ H (x),

Pr

(

Mm −bm

am
×

am

amk
+

bm −bmk

amk
≤ x

)k

−→ H

{

x −β(k)

α(k)

}k

,

as the convergence to types theorem states that

am

amk
−→α(k) > 0,

bk −bmk

amk
−→β(k), m →∞.



Extremal type theorem
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Theorem (Extremal types theorem). If there exist sequences of

constants {am > 0: m ≥ 1} and {bm ∈R : m ≥ 1} such that, as m →∞,

Pr

(

Mm −bm

am
≤ x

)

−→ H (x),

for some non–degenerate distribution H, then H has the same type as

one of the following distributions:

I: H (x) = exp
{

−exp(−x)
}

, x ∈R;

II: H (x) =
{

0, x ≤ 0,

exp(−x−α) , x > 0,α> 0;

III: H (x) =
{

exp
{

−(−x)α
}

, x < 0,α> 0,

1, x ≥ 0.



The three limiting families
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ä The three limiting distribution are known respectively as the

Gumbel, Fréchet and Weibull distributions.

ä Note that Fréchet is lower bounded, Weibull is upper bounded.
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ä From a statistical perspective, we assume that for some

(unknown) a > 0 and b ∈R,

Pr

(

Mm −b

a
≤ x

)

≈ H (x),

or in other words,

Pr(Mm ≤ x) ≈ H

(

x −b

a

)

= H2(x),

where H2 is of the same type as H .

ä We thus fit one of the three family to a series of observations of

Mm .
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ä From a statistical perspective, we assume that for some

(unknown) a > 0 and b ∈R,

Pr

(

Mm −b

a
≤ x

)

≈ H (x),

or in other words,

Pr(Mm ≤ x) ≈ H

(

x −b

a

)

= H2(x),

where H2 is of the same type as H .

ä We thus fit one of the three family to a series of observations of

Mm .

ä It is a bit unfortunate that we need to consider three different

families. . .
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Definition 3. A random variable X has a Generalized Extreme Value

distribution GEV(µ,σ,ξ) if its c.d.f. is

H (x) = exp

{

−
(

1+ξ
x −µ

σ

)−1/ξ
}

, 1+ξ
x −µ

σ
> 0.

The GEV distribution has three parameters: a location µ ∈R, a scale

σ> 0 and a shape ξ ∈R.

The case ξ= 0 is derived by a continuity extension, i.e.,

H (x) = exp
{

−exp
(

−
x −µ

σ

)}

, x ∈R.

ä The shape parameter controls the tail, i.e.,

– ξ> 0 corresponds to the heavy–tailed (Fréchet) case;

– ξ= 0 corresponds to the light–tailed (Gumbel) case;

– ξ< 0 corresponds to the short–tailed (Weibull) case.
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Theorem. If there exist sequences of constants {am > 0: m ≥ 1} and

{bm ∈R : m ≥ 1} such that, as m →∞,

Pr

(

Mm −bm

am
≤ x

)

−→ H (x),

for some non–degenerate distribution H, then

H (x) = exp

{

−
(

1+ξ
x −µ

σ

)−1/ξ
}

, 1+ξ
x −µ

σ
> 0,

for some µ ∈R, σ> 0 and ξ ∈R.
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Theorem. If there exist sequences of constants {am > 0: m ≥ 1} and

{bm ∈R : m ≥ 1} such that, as m →∞,

Pr

(

Mm −bm

am
≤ x

)

−→ H (x),

for some non–degenerate distribution H, then

H (x) = exp

{

−
(

1+ξ
x −µ

σ

)−1/ξ
}

, 1+ξ
x −µ

σ
> 0,

for some µ ∈R, σ> 0 and ξ ∈R.

Remark. Watch out! The theorem above states that if the limit exists it

has to be GEV. In general there is no guarantee that such a limit exists,

e.g., Poisson distribution.



Domains of attraction
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Definition 4. A distribution F is said to belong to the (max) domain of attraction of

the

Gumbel Gumbel

Fréchet distribution if the limiting distribution of
Mm−bm

am
is Fréchet

Weibull Weibull

Example 2. The (max) domain of attraction of the Normal distribution is Gumbel.

ä In practice the notion of domain of attraction is of little interest since typically F

is unknown—and so is the domain of attraction!
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ä How one can determine sequences {am : m ≥ 1} and {bm : m ≥ 1}?

ä The von Mises conditions give sufficient (but not necessary)

simple conditions, i.e., for a (smooth enough) distribution F the

Mills ratio is

r (x) =
1−F (x)

f (x)
.

Then with

bm = F−1

(

1−
1

m

)

, am = r (bm), ξ= lim
x→x+

r ′(x),

the limit distribution of (Mm −bm)/am is GEV with shape ξ.

Example 3. Use the von Mises conditions to check the limiting

distribution of maxima from the uniform, exponential, Fréchet and

Gaussian distribution.



Penultimate approximation
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ä Convergence to the limiting distribution may be slow.

ä Taking ξm = r ′(bm) may give better approximation to the

distribution of (Mm −bm)/am for finite m than does using the

limiting approximation.

Example 4. For the N (0,1) case we have

ξ7 ≈−0.324, ξ30 ≈−0.176, ξ90 ≈−0.13, ξ365 ≈−0.097, ξ3650 ≈−0.068,

so the distribution of Mm is short–tailed compared to the Gumbel

limit—even when m is very large!
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ä Convergence to the limiting distribution may be slow.

ä Taking ξm = r ′(bm) may give better approximation to the

distribution of (Mm −bm)/am for finite m than does using the

limiting approximation.

Example 4. For the N (0,1) case we have

ξ7 ≈−0.324, ξ30 ≈−0.176, ξ90 ≈−0.13, ξ365 ≈−0.097, ξ3650 ≈−0.068,

so the distribution of Mm is short–tailed compared to the Gumbel

limit—even when m is very large!

ä As a consequence, even if we were sure about the Gumbel limit,

one should prefer fitting a GEV with an arbitrary shape parameter

ξ.



Illustration of the penultimate approximation
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Figure 2: Illustration of the penultimate approximation with 100 replicated of renormalized

N(0,1) maxima with m = 7,30,90,365,3650.
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Theorem. If there exist sequences of constants {am > 0: m ≥ 1} and

{bm ∈R : m ≥ 1} such that, as m →∞,

Pr

(

Mm −bm

am
≤ x

)

−→ H (x),

for some non–degenerate distribution H, then

H (x) = exp

{

−
(

1+ξ
x −µ

σ

)−1/ξ
}

, 1+ξ
x −µ

σ
> 0,

for some µ ∈R, σ> 0 and ξ ∈R.
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ä We observe a time series of, say, daily values X1, X2, . . . supposed to

be independent and identically distributed from F

ä We compute the maxima Mm = max(X1, . . . , Xm) of blocks of the

original time series

– Environmental applications: annual maxima with m = 365,

monthly maxima m = 30

– Finance: annual maxima with m = 250, monthly maxima

m = 20

ä We suppose that this new time series of block maxima follows the

GEV distribution with unknown parameters µ,σ and ξ.

ä We then estimate the parameters and use our fitted GEV for

estimations.
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Figure 3: Annual maxima for precipitation (mm) recorded at Toulouse–Blagnac.

ä Watch out for seasonality, starting/ending of blocks, e.g.,

hydrological years.
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Figure 4: Illustration about the use of (negative) log-returns, i.e., Yt = − log(Xt /Xt−1)—Yahoo

closing prices.

ä It is common practice to work on the (negative) log-return to

cancel out trends and mitigate the volatility.



Quantiles for the GEV
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ä Let p ∈ (0,1), the quantile yp of a GEV(µ,σ,ξ) with exceedance

probability p , i.e., F (yp ) = 1−p , is

yp =µ−σ
1− {− log(1−p)}−ξ

ξ
.

ä In environmental application we say that yp is the return level

associated with the return period 1/p .

ä In finance we say that yp is the Value at Risk (VaR).

ä In both cases, yp is a quantile.



Why the phrasing “return period”?
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ä Let T = 1/p with p ∈ (0,1).

ä Let Y1,Y2, . . .
iid∼ Y and consider the random variable

I = argmin {i ≥ 1: Yi ≥ yp }, Pr(Y ≥ yp ) = p.

ä Clearly I ∼ Geom(p) as Pr(“success”) = Pr(Y ≥ yp ) = p .

ä Hence E(I ) = 1/p = T , that is, yp is expected to be exceeded once

every T = 1/p observations.

ä If the Yi ’s are block maxima, it is expected to be exceeded once

every T = 1/p blocks, e.g., years.

Remark. Don’t be fooled! It doesn’t refer to any kind of periodicity. . .



Return level plot
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It is common practice to show results using a return level plot, i.e.,

plotting on a log–scale for the x–axis the function

f : T 7−→ yp =µ−σ
1− {− log(1−p)}−ξ

ξ
, p =

1
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Return level plot
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It is common practice to show results using a return level plot, i.e.,

plotting on a log–scale for the x–axis the function

f : T 7−→ yp =µ−σ
1− {− log(1−p)}−ξ

ξ
, p =
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Remark. Sometimes the x–axis is not the return period T but rather

−1/log(1−1/T ). Since −1/log(1−1/T ) ∼ T as T ∼∞, both plots are

roughly the same.



Inference

1. Block maxima

Type and Max-stability

Extremal type theorem

The three limiting

families

GEV

Domains of attraction

von Mises conditions
Penultimate

approximation

Quantile

Return level plot

⊲ Inference

Model checking

Assessing uncertainties

2. Threshold

exceedances

3. Point process

4. Non-stationary

sequences

5. Stationary sequences

Extreme value theory M2 Statistics and Econometrics – 32 / 95

Given observed block maxima Y1, . . . ,Yn , we want to estimate the GEV

parameters (µ,σ,ξ). One could use

ä moment based estimators—usually not relevant as moments

might not exist with extremes.

ä probability weighted moments—good small sample performance

but not very flexible.

ä likelihood based approaches (by far the most used approach)

– flexible and usually efficient;

– model selection is easy (AIC, BIC, Likelihood ratio, . . . )

– can be embedded, if necessary, into a Bayesian framework.



Example: Precipitation extremes at Toulouse–Blagnac
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> library(evd)##R package for EVT (other alternatives exist)

> head(data)##data is an R matrix giving the *raw* data

Years Precip

1 1947 0.2

2 1947 0.2

3 1947 0.0

4 1947 0.0

5 1947 6.0

6 1947 0.4

> block.max <- aggregate(Precip~Years, FUN = max, data = data)

> (fitted <- fgev(block.max[,"Precip"]))

Call: fgev(x = block.max[, "Precip"])

Deviance: 543.5806

Estimates

loc scale shape

35.12564 9.90881 0.01489

Standard Errors

loc scale shape

1.33591 0.97678 0.09087

...



Model checking: QQ–plot
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ä QQ–plots are useful for model checking, identifying possible

outliers

ä Given a sample Y1, . . . ,Yn
iid∼ F we plot the order statistics

Y(1) < ·· · < Y(n) against the plotting positions of F , e.g., the fitted

GEV,

F−1

(

1

n +1

)

< ·· · < F−1
( n

n +1

)

.

ä If F is a sensible statistical model, one should get a points lying

close to a straight line of unit slope through the origin.



QQ–plot: Toulouse–Blagnac

1. Block maxima

Type and Max-stability

Extremal type theorem

The three limiting

families

GEV

Domains of attraction

von Mises conditions
Penultimate

approximation

Quantile

Return level plot

Inference

⊲ Model checking

Assessing uncertainties

2. Threshold

exceedances

3. Point process

4. Non-stationary

sequences

5. Stationary sequences

Extreme value theory M2 Statistics and Econometrics – 35 / 95

> qq(fitted)
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Remark. The plot shows 95% pointwise confidence intervals obtained

by parametric bootsrap.



Return level plot: Toulouse–Blagnac
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> rl(fitted)
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Remark. The plot shows empirical points, i.e., {(n +1)/(n +1− i ),Y(i )}

and pointwise confidence intervals as before.



Assessing uncertainties
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ä The output of fgev gives the standard errors for µ̂, σ̂ and ξ̂ from

which one easily get symmetric confidence intervals, e.g.,

µ̂± z1−(1−α)/2 ×std.err(µ̂), Φ(z1−(1−α)/2) = 1− (1−α)/2.

ä Symmetry is not always a good thing so one could use confidence

intervals based on the profile likelihood.

ä As the likelihood ratio statistics satisfies

W (ξ0) := 2{ℓ(θ̂)−ℓ(θ̂ξ=ξ0
)}

D−→χ2
1, n →∞,

we can find I = [ξ−,ξ+] such that for all ξ0 ∈ I

Pr
{

χ2
1 >W (ξ0)

}

>α.



Profile likelihood: Toulouse–Blagnac
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> plot(profile(fitted))

> plot(profile(fgev(block.max[,"precip"], prob = 0.05), "quantile"))
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fgev(block.max[,"Precip"], prob = 0.05) #@%*?!
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ä What does mean this (optional) argument prob = p?

ä It is just a reparametrization of the GEV with parameters (yp ,σ,ξ),

i.e., we substitute µ in the density by

µ= yp +σ
1− {− log(1−p)}−ξ

ξ

ä And fit the GEV as usual.

ä We can then profile the likelihood w.r.t. yp as any other parameter

!
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ä Previously we characterize extremes using block maxima

Mm = max
j=1,...,m

X j .

ä Another approach consists in considering threshold exceedances

{X j −u : X j −u > 0},

for some (high enough) threshold u.



The Generalized Pareto Distribution
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Theorem. Let X1, X2, . . . be a sequence of i.i.d. random variables with

distribution F and sequences {am > 0: m ≥ 1}, {bm ∈R : m ≥ 1} such

that

Pr

(

Mm −bm

am
≤ x

)

−→ H (x), m →∞,

where H is a (non degenerate) GEV. Then

Pr{X > um(u +x) | X > um(u)}−→ 1− H̃ (x), m →∞,

with um(x) = am x +bm for all x ∈ (0,∞) and

H̃ (x) =
{

1−
(

1+ξ x
τ

)−1/ξ
, ξ 6= 0

1−exp
(

− x
τ

)

, ξ= 0,

where τ=σ+ξ(u −µ). The limiting distribution is the Generalized

Pareto Distribution GPD(τ,ξ).
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ä We observe a time series of, say, daily values X1, X2, . . . supposed

(for now) to be independent and identically distributed from F .

ä We choose, and not estimate, a large enough threshold

u—common practice is to take u = F−1(0.95) but see later.

ä Compute the exceedances

{Xi −u : Xi > u} .

ä And fit a GPD to these exceedances.
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Figure 5: Exceedances above u = 20 (mm) recorded at Toulouse–Blagnac.

ä Watch out for seasonality, temporal dependences
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Figure 6: (Negative) Log-returns exceedances with threshold u = 0.1—Yahoo closing prices.



Quantiles for the GPD
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ä Let p ∈ (0,1), the quantile yp of a GPD(τ,ξ) with exceedance

probability p , i.e., F (yp ) = 1−p , is

yp = τ
p−ξ−1

ξ
.

ä Or depending on the situtation we can write

yp = u +τ
p−ξ−1

ξ
,

if we work on the orginal scale.



Return levels for the GPD
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ä Recall that the GPD is an asymptotic model for conditional

exceedances.

ä For some threshold u, the return level yp > u of with exceedance

probability p satisfies

Pr(X > yp ) = Pr(X > yp | X > u)Pr(X > u) = p.

ä Hence we get

yp = u +τ

(

p/p(u)
)−ξ−1

ξ
, p(u) = Pr(X > u),

and yp is expected to be exceeded once every 1/p observations.

ä It is often more convenient to work on an annual scale so if we

have ny observations per year, yp is expected to be exceeded once

every 1/(pny ) years.



Example: Yahoo negative log-returns
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> library(evd)## For EVT

> library(quantmod)## To get the Yahoo data

> getSymbols("YHOO", src = "google")

> head(YHOO)## YHOO is a xts object giving the *raw* data

> nlogreturn <- -diff(log(YHOO$YHOO.Close))

> (fitted <- fpot(nlogreturn, 0.05, npp = 250))

Call: fpot(x = nlogreturn, threshold = 0.05, npp = 250)

Deviance: -320.2334

Threshold: 0.05

Number Above: 58

Proportion Above: 0.0214

Estimates

scale shape

0.01743 0.28939

Standard Errors

scale shape

0.003793 0.179451

...



QQ–plot: Yahoo
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> qq(fitted)
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Return level plot: Yahoo
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> rl(fitted)
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Figure 7: Return level plot for the Yahoo data set. Left: without specifying the npp argument.

Right: With npp = 250.



Profile likelihood: Yahoo
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> plot(profile(fitted))

> plot(profile(fpot(nlogreturn, 0.05, mper = 20, npp = 250)),

"rlevel")
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ä Remember that threshold u is not a parameter of the GPD. We

should fix it. But how?

ä Intuitively one should expect a bias/variance tradeoff:

– if u is too low: far from the asymptotic regime → bias

– if u is too high: only few exceedances → large variance

ä The basic idea is to check whether some properties of the GPD are

met for a sequence of increasing thresholds {um : m ≥ 1}.
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Proposition 1. If X −u0 | X > u0 ∼ GPD(τ,ξ) then for all u ≥ u0,

X −u | X > u ∼ GPD(τ̃,ξ), τ̃= τ+ξ(u −u0).
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Proposition 2. If X −u0 | X > u0 ∼ GPD(τ,ξ), ξ< 1, then for all u ≥ u0

MRL(u) = E (X −u | X > u) =
τ(u0)+ξu

1−ξ

ä Hence if the GPD assumption is sensible for some threshold u0,

then the function u 7→ MRL(u) should be linear in u, u ≥ u0.

ä We then define a sequence of increasing threshold {um : m ≥ 1},

compute the empirical version of MRL(um) and check for linearity.



Mean residual life plot: Yahoo

1. Block maxima

2. Threshold

exceedances
Another representation

for extremes

GPD

Quantile

⊲ Threshold selection

3. Point process

4. Non-stationary

sequences

5. Stationary sequences

Extreme value theory M2 Statistics and Econometrics – 55 / 95

> mrlplot(nlogreturn, c(0, 0.12))
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Parameters stability

1. Block maxima

2. Threshold

exceedances
Another representation

for extremes

GPD

Quantile

⊲ Threshold selection

3. Point process

4. Non-stationary

sequences

5. Stationary sequences

Extreme value theory M2 Statistics and Econometrics – 56 / 95

ä Let X −u0 | {X > u0} ∼ GPD(τ,ξ) then we know that for all u ≥ u0

X −u | {X > u} ∼ GPD(τ̃,ξ), τ̃= τ+ξ(u −u0).

ä Hence the function τ∗ : u 7→ τ̃−ξu should be constant and the

shape parameter should be the same.

ä It suggests to define a sequence of increasing threshold

{um : m ≥ 1}, fit a GPD to exceedances above threshold um , and

check for stability of τ∗ and ξ.
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> tcplot(nlogreturn, c(0, 0.12))
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ä A threshold around u = 0.04 seems appropriate here.
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Definition 5 (Informal). A point process {Xi : i ∈ I } is a stochastic

process whose realization is a collection of points “falling” in a space

X . These points are often called atoms.

ä The distribution of a point pro-

cess is characterized through

its counting measure

N (A) =
∑

i∈I

δXi
(A),

A ⊂ X Borel set and δ the

Dirac function.

ä Its intensity measure is de-

fined by

Λ : A 7−→ E{N (A)}.

43.55

43.60

43.65

1.35 1.40 1.45 1.50 1.55

Longitude

L
a
ti
tu

d
e

Figure 8: Locations of the bike share program

in Toulouse. Can be seen as a point process on

X = Toulouse.
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Definition 6. A point process with intensity measure Λ is a Poisson

point process if for all k ≥ 1 and disjoint Borel sets A, A1, . . . , Ak ⊂X ,

i) N (A) ∼ Poisson{Λ(A)};

ii) N (A1), . . . , N (Ak ) are independent random variables.

Remark. The intensity measure Λ is not necessarily finite. We only

require it to be σ–finite, i.e., one may have Λ(X ) =∞ but we can find

a partition ∪i∈I Ai =X such that Λ(Ai ) <∞, i ∈ I , where I is at most

countable.
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Definition 7. A Poisson point process on X with intensity measure Λ

is regular if for all Borel set A ⊂X

Λ(A) =
∫

A
λ(s)ds.

The function λ is non-negative and is called the intensity function.

Proposition 3. Let {X1, . . . , Xn} be a realization of a Poisson point

process on X with intensity measure Λ. The likelihood is

exp{−Λ(X )}
n
∏

i=1

λ(Xi ).
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Theorem. Under the framework of convergence of Mm to the GEV, the

sequence of point processes living in X = [0,1]×R

{Pm}m≥1 =
{(

i

m +1
,

Xi −bm

am

)

: i = 1, . . . ,m

}

m≥1

converges to a Poisson point process (PPP) on [0,1]×C with intensity

measure

Λ{[a,b]× (z,∞)} = (b −a)
(

1+ξ
z −µ

σ

)−1/ξ
,

where C = {x ∈R : 1+ξ(x −µ)/σ> 0}.
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m = 7 m = 30 m = 90 m = 365 m = 3650
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Figure 9: Illustration of the convergence to a PPP with m = 7,30,90,365,3650 for standard Expo-

nential random variables—am = 1 and Bm = logm. The threshold is u =− log10.



Statistical interpretation
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ä For a threshold u large enough, we fit a PPP to the exceedances with intensity

measure

Λ{(a,b)× (x,∞)}= (b −a)×
(

1+ξ
x −µ

σ

)−1/ξ
, x > u, (a,b) ⊂ [0,1].

ä In practice it is more convenient to scale the parameter to an annual scale, i.e.,

Λ{(a,b)× (x,∞)}= nyear(b −a)×
(

1+ξ
x −µ

σ

)−1/ξ
, x > u, (a,b) ⊂ [0,1],

where nyear is the number of years of data.
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ä For all x > u, the expected number of exceedances above x in a
year is

E

[

N
{

(0,n−1
year)× (x,∞)

}]

=Λ

{

(0,n−1
year)× (x,∞)

}

=
(

1+ξ
x −µ

σ

)−1/ξ
.

ä Hence the T –year return level yp , p = 1/T , satisfies

T
(

1+ξ
yp −µ

σ

)−1/ξ

= 1 ⇐⇒ yp =µ+σ
p−ξ−1

ξ
.

Remark. It is a the return level derived from a GPD(σ,ξ) with

threshold µ restricted to the set {x > u}.
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> (fitted <- fpot(nlogreturn, 0.05, model = "pp", npp = 250))

Call: fpot(x = nlogreturn, threshold = 0.05, model = "pp", npp = 250)

Deviance: -398.3905

Threshold: 0.05

Number Above: 58

Proportion Above: 0.0213

Estimates

loc scale shape

0.08803 0.02907 0.30824

Standard Errors

loc scale shape

0.007316 0.006808 0.190213

Optimization Information

Convergence: successful

Function Evaluations: 89

Gradient Evaluations: 13
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> qq(fitted)
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Figure 10: QQ-plots for the Yahoo data with the PPP approach.
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> rl(fitted)
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Figure 11: Return level plot for the Yahoo data set with the PPP approach.
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ä Unfortunately the evd package appears to be broken when we try

to profile the PPP likelihood.

ä Hence we will try to do it as a homework or during the lab session.
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> getSymbols("YHOO", src = "google")

> head(YHOO)## YHOO is a xts object giving the *raw* data

> nlogreturn <- -diff(log(YHOO$YHOO.Close))

> nlogreturn[1] <- 0

> quarter.max <- aggregate(YHOO.Close ~ quarters(index(YHOO)):years(index(YHOO)),

> FUN = max, data = nlogreturn)

> prob <- 1 / 10##10 years return level

> gev <- fgev(quarter.max$YHOO.Close)

> gpd <- fpot(nlogreturn, 0.05, npp = 250, mper = 1 / prob)

> ppp <- fpot(nlogreturn, 0.05, model = "pp", npp = 250)

> qgev(1 - prob/4, gev$param["loc"], gev$param["scale"], gev$param["shape"])

0.1691627

> gpd$param["rlevel"]

0.180289

> qgpd(1 - prob, ppp$param["loc"], ppp$param["scale"], ppp$param["shape"])

0.1854948
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ä In many situtation the i.i.d. assumption is not appropriate.

ä In this section we will focus on situations in case of failure of the

i.d. assumption;

ä It is often the case with environmental processes which typically

involve:

1. seasonality, i.e., spring, summer, fall, winter;

2. trends, e.g., global warming.
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ä Two (simple) strategies are possible:

1. you restrict your analysis to specific seasons, i.e., modelling

seasonal extremes;

2. you emmbed the seasonal pattern into the parameters of the

GEV/GPD/PPP.

ä The first approach is straightforward as it is just a classical EVT

analysis applied to a subset of our data.

ä The second is (very) slightly more elaborate.
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Assume assume for the GEV that µ(t) =β0 +β1t/100—increase of β1
◦C in a century.

> covar <- data.frame(year = scale(1:nrow(summer.max), scale = FALSE)) /

100

> (fit <- fgev(summer.max$Temperature, nsloc = covar))

Call: fgev(x = summer.max$Temperature, nsloc = covar)

Deviance: 295.6636

Estimates

loc locyear scale shape

35.1082 3.3582 1.8451 -0.1394

Standard Errors

loc locyear scale shape

0.24441 1.16260 0.16944 0.07912

Optimization Information

Convergence: successful

Function Evaluations: 20

Gradient Evaluations: 10



Model selection

1. Block maxima

2. Threshold

exceedances

3. Point process

4. Non-stationary

sequences

Failure of the i.d.

assumption

Two strategies

Toulouse temperatures

Model with a trend

⊲ Model selection

5. Stationary sequences

Extreme value theory M2 Statistics and Econometrics – 76 / 95

ä Is this trend really necessary, i.e.,

H0 : β1 = 0 H1 : β1 6= 0?

ä How would you do this?
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> z <- abs(fit$par["locyear"] / fit$std.err["locyear"])

> 2 * pnorm(z, lower.tail=FALSE)

locyear

0.003870264

� Conclusion?
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> z <- abs(fit$par["locyear"] / fit$std.err["locyear"])

> 2 * pnorm(z, lower.tail=FALSE)

locyear

0.003870264

� Conclusion?

> fit0 <- fgev(summer.max$Temperature)

> W <- 2 * (logLik(fit) - logLik(fit0))

> pchisq(W, df = 1, lower.tail=FALSE)

’log Lik.’ 0.005746295 (df=4)

� Conclusion?



Theoretical versions

1. Block maxima

2. Threshold

exceedances

3. Point process

4. Non-stationary

sequences

Failure of the i.d.

assumption

Two strategies

Toulouse temperatures

Model with a trend

⊲ Model selection

5. Stationary sequences

Extreme value theory M2 Statistics and Econometrics – 78 / 95

ä From the asymptotic normality of the MLE we know that

p
n(β̂1 −β1,∗)

d−→ N (0,σ2), n →∞.

ä Hence under H0, i.e., β1,∗ = 0, we have

p
n
β̂1

σ

d−→ N (0,1), n →∞.

This is known as the Wald test.
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ä Using Taylor expansion of the log-likelihood ℓ(θ∗) around θ̂ we

have

ℓ(θ∗)
·∼ ℓ(θ̂)+ (θ∗− θ̂)⊤∇ℓ(θ̂)+

1

2
(θ∗− θ̂)⊤∇2ℓ(θ̂(θ∗− θ̂)⊤

·∼ ℓ(θ̂)+
1

2
(θ∗− θ̂)⊤∇2ℓ(θ̂)(θ∗− θ̂)

ä Hence we conclude that as n →∞

W = 2{ℓ(θ̂)−ℓ(θ∗)} =−
p

n(θ∗− θ̂)⊤
1

n
∇2ℓ(θ̂)

p
n(θ∗− θ̂)

d−→ χ2
p , p = |θ∗|.

ä This is known as the likelihood ratio test.
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ä Sor far we analyzed the asymptotic behaviour of i.i.d. random

variable.

ä In many situations, e.g., Yahoo time series, this assumption is

unrealistic !

ä What happens there is some serial dependance ?
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Definition 8. A stationary sequence {Xi : i ≥ 1} is said to satisfy the

D(un) condition, if for all i1 < ·· · < ip < j1 < ·· · < jq with j1 − ip > ℓn ,

we have

|Pr(Xi1
≤ un , . . . , Xip

≤ un , X j1
≤ un , . . . , X jq

≤ un)−
Pr(Xi1

≤ un , . . . , Xip
≤ un)Pr(X j1

≤ un , . . . , X jq
≤ un )| ≤α(n,ℓ),

where α(n,ℓn) → 0 for some sequences ℓn = o(n) as n →∞.

ä Roughly speaking the D(un) condition imposes that the two

blocks Xi ’s and X j ’s are close to being independent as long as they

are sufficiently “far apart”.

ä One way to avoid long–range dependence.
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Theorem. Let X1, X2, . . . be a stationary sequence and define

Mn = max(X1, . . . , Xn). If there exists 2 sequences {an > 0} and {bn ∈R}

such that

Pr

(

Mn −bn

an
≤ z

)

−→G(z), n →∞,

where G is a non degenerate distribution and the D(un) condition is

met with un = an z +bn for all z ∈R such that G(z) > 0, then necessarily

G is of the GEV form.
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Theorem. Let X1, X2, . . . be a stationary sequence and define

Mn = max(X1, . . . , Xn). If there exists 2 sequences {an > 0} and {bn ∈R}

such that

Pr

(

Mn −bn

an
≤ z

)

−→G(z), n →∞,

where G is a non degenerate distribution and the D(un) condition is

met with un = an z +bn for all z ∈R such that G(z) > 0, then necessarily

G is of the GEV form.

Remark. The GEV parameters for the stationary sequence will not be

the same as the ones for an i.i.d. sequence.



Stationary sequence ↔ i.i.d. sequence

1. Block maxima

2. Threshold

exceedances

3. Point process

4. Non-stationary

sequences

5. Stationary sequences

Stationary sequences

D(un ) condition

⊲ GEV revisited

Extremal index

Exceedances

Cluster maxima

Declustering

Extreme value theory M2 Statistics and Econometrics – 84 / 95

Theorem. Let X1, X2, . . . be a stationary sequence and X ∗
1 , X ∗

2 , . . . an

i.i.d. sequence with the same marginal distribution as the Xi ’s. Define

Mn = max(X1, . . . , Xn) and M∗
n = max(X ∗

1 , . . . , X ∗
n ). Under the

hypothesis of the previous theorem, we have

Pr

(

M∗
n −bn

an
≤ z

)

−→G∗(z), n →∞,

if and only if

Pr

(

Mn −bn

an
≤ z

)

−→G(z), n →∞,

where

G(z) =Gθ
∗(z), 0 < θ ≤ 1.

� θ is called the extremal index.
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Figure 12: Impact of the extremal index θ on return levels.
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Figure 12: Impact of the extremal index θ on return levels.

ä As expected, Mn is stochastically smaller than M∗
n —as maxima

taken over dependent r.v. is likely to be smaller than for

independent r.v.
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ä Note that we have

Gθ
∗(z) = exp

{

−θ
(

1+ξ
z −µ

σ

)−1/ξ
}

= exp

{

−
(

1+ξ
z −µ∗
σ∗

)−1/ξ
}

,

where µ∗ =µ− σ
ξ

(

1−θξ
)

, σ∗ =σθξ.
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� No change for block maxima of stationary sequence, since you

will estimate µ∗,σ∗ and ξ directly.

ä Wait!!! There is dependence so the likelihood is not

L(µ,σ,ξ;m1, . . . ,mñ) =
ñ
∏

i=1

fGEV (mi ;µ,σ;ξ) . . .
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� No change for block maxima of stationary sequence, since you

will estimate µ∗,σ∗ and ξ directly.

ä Wait!!! There is dependence so the likelihood is not

L(µ,σ,ξ;m1, . . . ,mñ) =
ñ
∏

i=1

fGEV (mi ;µ,σ;ξ) . . .

ä Yes but no! If beginnings / endings of blocks are well defined1,

assumption of mutual independence between block maxima

makes sense ⇒ Likelihood still valid.

� This will be however a bit different for the GPD // PPP approaches.

1Why should it always be “calendar year” blocks?
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ä The extremal index θ has two alternative definitions:

– As the reciprocal of the limiting expected cluster size

θ−1 = lim
n→∞

E

(

pn
∑

i=1

1{Xi>un } | Mpn
> un

)

,

for sequences such that n{1−F (un )}→λ ∈ (0,∞) and

pn = o(n).

– As the limiting probability that an exceedance over un is the

last one

θ = lim
n→∞

Pr
{

max(X2, . . . , Xpn
) ≤ un | X1 ≥ un

}

.
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ä Consider the 10–years return event A = {X > z10}.

ä This event is expected to occur 10 times in a century.



Watch out!

1. Block maxima

2. Threshold

exceedances

3. Point process

4. Non-stationary

sequences

5. Stationary sequences

Stationary sequences

D(un ) condition

GEV revisited

⊲ Extremal index

Exceedances

Cluster maxima

Declustering

Extreme value theory M2 Statistics and Econometrics – 89 / 95

ä Consider the 10–years return event A = {X > z10}.

ä This event is expected to occur 10 times in a century.

ä However we have

Pr(A not seen in the next 10 years) =
{

(

1− 1
10

)10 ≈ 0.35, θ = 1
(

1− 1
10

)10θ = 0.90, θ = 0.1.
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ä Consider the 10–years return event A = {X > z10}.

ä This event is expected to occur 10 times in a century.

ä However we have

Pr(A not seen in the next 10 years) =
{

(

1− 1
10

)10 ≈ 0.35, θ = 1
(

1− 1
10

)10θ = 0.90, θ = 0.1.

� When θ = 0.1, these “expected 10 extremes” will tend to occur

simultaneously leading to a higher probability of seeing none of

them within the next 10 years.
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ä Two approaches are possible:

1. either you discard some observations to be closer to the i.i.d.

assumption;

2. or you take into account for such a serial dependence, e.g.,

assume a Markovian structure. . . Not discussed here!
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ä Because we usually use the MLE to fit the GPD // PPP, we have to

use cluster maxima only for inference.

ä Still the expected annual number of exceedances above z is

Λ{(0,n−1
year)× (z,∞)} = θ

(

1+ξ
z −µ

σ

)−1/ξ
,

and the T –year return level yp , p = 1/T , satisfies

Tθ
(

1+ ξ̂
yp −µ

σ

)1/ξ

= 1 ⇐⇒ yp =µ+
σ

ξ

{

(θT )ξ−1
}

,

where the extremal index θ can be estimated separately by

θ̂ =
nc

nu
, nc = # clusters, nu = # exceedances above u.
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ä Because we usually use the MLE to fit the GPD // PPP, we have to

use cluster maxima only for inference.

ä Still the expected annual number of exceedances above z is

Λ{(0,n−1
year)× (z,∞)} = θ

(

1+ξ
z −µ

σ

)−1/ξ
,

and the T –year return level yp , p = 1/T , satisfies

Tθ
(

1+ ξ̂
yp −µ

σ

)1/ξ

= 1 ⇐⇒ yp =µ+
σ

ξ

{

(θT )ξ−1
}

,

where the extremal index θ can be estimated separately by

θ̂ =
nc

nu
, nc = # clusters, nu = # exceedances above u.

�We need to define cluster of exceedances!
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> clusters(data, thresh, r, plot = TRUE)
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r = 1
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r = 2
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r = 3
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> fpot(df$Temperature, 32, "pp", npp = 365.25, cmax = TRUE, r = 3)

Call: fpot(x = df$Temperature, threshold = 32, model = "pp", npp = 365.25,

cmax = TRUE, r = 3)

Deviance: 807.4698

Threshold: 32

Number Above: 779

Proportion Above: 0.0305

Clustering Interval: 3

Number of Clusters: 330

Extremal Index: 0.4236

Estimates

loc scale shape

35.5823 1.8864 -0.2533

Standard Errors

loc scale shape

0.19606 0.08125 0.04456
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ä Here the extremal index estimate is θ̂ ≈ 0.42, i.e., clusters tends to be of size 2.5.

� It is typical, I think, for temperatures data but might be very different for, say,

rainfall where θ ≈ 1.

GEV PPP PPP (r = 1) PPP (r = 3) PPP (r = 10)

µ 35.2 (0.3) 36.6 (0.1) 35.8 (0.2) 35.6 (0.2) 34.6 (0.3)

σ 1.9 (0.2) 1.51 (0.07) 1.72 (0.07) 1.88 (0.08) 2.65 (0.16)

ξ -0.16 (0.09) -0.19 (0.03) -0.23 (0.04) -0.25 (0.04) -0.35 (0.07)

y100 41.3 (0.94) 41.1 (1.2) 40.3 (1.1) 40.1 (1.2) 39.6 (2.8)

θ — — 0.54 0.42 0.21
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