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Abstract

Although the last decades have seen many developments on max-stable processes,

little is known on the limiting distribution of exceedances of stochastic processes.

Paralleling the univariate extreme value theory, this work focuses on threshold ex-

ceedances of a stochastic process and their connections with regularly varying and

generalized Pareto processes. More precisely we define an exceedance through a cost

functional ` and show that the limiting (rescaled) distribution is a simple `–Pareto

process whose spectral measure can be characterized. Several equivalent construc-

tions for `–Pareto processes are given using either a constructive approach, either an

homogeneity property or a peak over threshold stability. We also provide an estimator

of the spectral measure and give some examples.
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1 Introduction

Balkema and de Haan [4] and Pickands [16] have made a major contribution to the

extreme value theory with the introduction of the generalized Pareto distribution and

its connection with exceedances above a large threshold. They established that the

linearly normalized maximum of independent random variables converges to an ex-

treme value distribution if and only if the normalized exceedance above a threshold

converges to a generalized Pareto distribution. For statistical purposes, the use of

peaks over threshold rather than block maxima is often more convenient since it usu-

ally wastes less observations. Extensions to the multivariate case have been proposed

by Rootzen and Tajvidi [17] and Falk et al. [12].

More recently, the infinite dimensional setting, i.e., the functional framework and

continuous random processes, enjoyed renewed interests. The generalized Pareto pro-

cesses, also known as GPD processes or functional generalized Pareto distributions,

have been introduced by Buishand et al. [5], Aulbach et al. [3] and de Haan and

Ferreira [8]. Similarly to the finite dimensional case, the domain of attraction of a

generalized Pareto process and that of the associated max-stable process coincide.

Several equivalent characterizations of Pareto processes are given, including the peak

over threshold stability and a homogeneity property. Statistical issues such as lo-

cal asymptotic normality or tests for the class of generalized Pareto processes are

addressed in Aulbach and Falk [1, 2].

Often exceedances above a high threshold can be defined through a uniform supre-

mum. More precisely, a peak over threshold of a stochastic process {X(t)}t∈T can be

defined by

sup
t∈T

X(t)− bn(t)

an(t)
> 0

where {an > 0}n≥1 and {bn}n≥1 are normalizing functions. Since we restrict our
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attention to the tails of the process, it is sensible to have

P
{

sup
t∈T

X(t)− bn(t)

an(t)
> 0

}
−→ 0, n→∞.

Theorem 4.2 in de Haan and Ferreira [8] states that if there exists continuous nor-

malizing functions {an > 0}n≥1 and {bn}n≥1 such that

X − bn
an

∣∣∣∣ {sup
t∈T

X(t)− bn(t)

an(t)
> 0

}

converges weakly in the space of continuous functions as n→∞, then the limit must

be a generalized Pareto process. In particular when X is nonnegative and an = bn > 0

are constants, we have

sup
t∈T

X(t)− bn
an

> 0 if and only if ‖X‖ > an

where ‖ · ‖ denotes the uniform norm.

Although from a theoretical point of view the use of a uniform supremum seems

sensible when working with the space of continuous functions, for practical purposes

other kinds of thresholds might be relevant. More generally, an exceedance over a

threshold can be defined as an event {`(X) > an}, for some functional ` and where

the threshold an is such that

P {`(X) > an} −→ 0, n→∞.

For example, Buishand et al. [5] were interested in the total amount of rain over a

catchment T , i.e.,
∫
t∈T X(t)dt where X(t) represents the amount of rain at t ∈ T . In

this context, it seems appropriate to let `(x) =
∫
t∈T x(t)dt and to derive the limiting

distribution of

a−1
n X | {`(X) > an}, n→∞.
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Other possibilities are `1(x) =
∫
T |x(t)|2dt, `2(x) = inft∈T x(t) or `3(x) = x(t0). The

choice `1 is natural in the context of an energy functional, for example if X stands for

the strength of the wind in space. A high threshold with respect to `2 occurs when the

random field takes large values at any point t ∈ T and might be relevant for modeling

sea levels along a dike. The use of `3 puts the emphasis on a specific point t0 ∈ T and

might be of interest for modeling extreme flows at the confluence of two rivers. We

may see these functionals as cost functionals and for our purposes we will restrict our

attention to the class of continuous (with respect to the uniform norm) nonnegative

and homogeneous functional ` : C → [0,+∞), with C = C{T, [0,+∞)} the Banach

space of nonnegative continuous functions over a compact parameter set T . All the

previous examples belong to this class. A functional ` is said to be homogeneous of

order β > 0 if

`(ux) = uβ`(x), u > 0, x ∈ C.

Without loss of generality, we can assume that β = 1. Indeed since the functional `

is nonnegative, the functional ˜̀= `1/β is clearly homogeneous of order 1 and satisfies

{`(X) > an} = {˜̀(X) > a1/β
n }.

In this paper, we focus on functional extreme value theory in the space C. The

theory was initiated by de Haan [7] and de Haan and Pickands [11]. For a background

on functional extreme value theory, we refer to de Haan and Ferreira [9]. Connections

with functionnal regular variations are well known, see for example de Haan and Lin

[10], Hult and Lindskog [13, 14] or Davis and Mikosch [6]. For the sake of simplicity, we

will restrict our attention to standardized (or simple) processes, i.e., processes whose

marginal distributions are in the domain of attraction of a Fréchet distribution.
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2 Preliminaries

We introduce the framework of our approach and, following Davis and Mikosch [6],

review some details on functional extreme value theory and regular variation theory.

Other relevant references on this topic are [10, 13, 14].

We start with some standard results on univariate extreme value theory. Let α > 0

and {Xi}i≥1 an i.i.d. sequence of positive random variables with common distribution

function F . For t > 1, we note a(t) = F←(1 − 1/t), where F← denotes the quantile

function. It is well known that the following statements are equivalent.

i) the tail function 1− F is regularly varying at infinity with index −α;

ii) tP{X1/a(t) ∈ ·} v−→ αu−α−1du as t → +∞, where v−→ stands for vague con-

vergence in the space M{(0,+∞]} of Radon measure on (0,+∞];

iii) the normalized sample point process
∑n

i=1 δXi/a(n) converges weakly inM{(0,+∞]}

to a Poisson point process on (0,+∞] with intensity αu−α−1du;

iv) the normalized maximum max(X1, . . . , Xn)/a(n) converges in distribution to an

α-Fréchet distribution;

v) the distribution P{X1/a(t) ∈ · | X1 > a(t)} of normalized exceedances over high

threshold converges to a Pareto distribution with index α;

We explain how this can be generalized to the functional setting and introduce first

the notion of functional regular variation. Let T be a compact metric space and C =

C{T, [0,+∞)} the Banach space of nonnegative continuous functions x : T → [0,+∞)

endowed with the uniform norm ‖x‖ = supt∈T |x(t)|, x ∈ C. Let S = {x ∈ C; ‖x‖ = 1}

be the unit sphere. Given any metric space X , we denote by B(X ) its Borel σ-algebra.

Definition 1. A C-valued random process X is said to be regularly varying with

exponent α > 0 and spectral probability measure σ on S, noted shortly X ∈ RVα,σ(C),
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if there exits a positive function a(·) such that a(t)→ +∞ as t→ +∞ and

tP {X/‖X‖ ∈ B, ‖X‖ > ra(t)} −→ σ(B)r−α, t→∞, (1)

for all r > 0 and all B ∈ B(S) such that σ(∂B) = 0 where ∂B denotes the boundary

of B.

The exponent α and the spectral measure σ are uniquely determined while the

function a(·) is unique up to asymptotic equivalence and regularly varying at infinity

with exponent 1/α. Similarly to the univariate case, a convenient choice is

a(t) = inf{x ≥ 0: P(‖X‖ ≤ x) ≤ 1− 1/t}, (2)

and in the remainder of this paper we will always assume this choice.

We now introduce some technical backgrounds on function and measure spaces

that are useful when using point processes. A first step is to introduce a suitable

modification of the space C in order to deal with points at infinity. In the univariate

case, this is done by working with the space (0,+∞] instead of [0,+∞). Within a

functional framework, we define C0 = C \ {0} and consider the complete separable

metric space C0 = (0,+∞]× S equipped with the metric

d{(r1, s1), (r2, s2)} = |1/r1 − 1/r2|+ ‖s1 − s2‖.

A set B is bounded in C0 if and only if there exists some ε > 0 such that B ⊂

[ε,+∞]×S. The polar decomposition C0 → (0,+∞)×S given by f 7→ (‖f‖, f/‖f‖)

is bijective and bi-continuous and allows to identify C0 and (0,+∞)× S.

Definition 2. Let M(C0) be the set of Borel measures m on C0 that are boundedly

finite, i.e., such that m(b) <∞, for all bounded sets B ∈ B(C0).

6



A sequence {mn}n≥1 in M(C0) is said to converge to m in the ŵ-topology if

∫
fdmn −→

∫
fdm, n→∞,

for all bounded and continuous functions f : C0 → R with bounded support.

The notion of ŵ–convergence generalizes the notion of vague convergence and

takes into account the fact that C0 is not locally compact. The ŵ-topology defined

by this notion of convergence ensures that M(C0) is a Polish space. The subspace

Mp(C0) consisting of all boundedly finite point measures is a closed subset of M(C0)

and is endowed with the induced ŵ-topology. It is the suitable space when working

with point processes in functional extreme value theory.

In the following, we emphasize on the connections between regular variations,

sample point measures, sample maxima and exceedances above high thresholds in

a functional framework. Before generalizing the analogous of statements i)–v) in

the univariate case to the functional framework, we first need some notations and to

introduce the limiting objects that will appear in the functional extreme value theory.

Definition 3. For α > 0 and σ a probability measure on S, we define

• mα,σ the unique measure on C0 such that

mα,σ{[r,+∞)×B} = r−ασ(B), r > 0, B ∈ B(S);

• Πα,σ a Poisson point measure on C0 with intensity mα,σ;

• Mα,σ a continuous max-stable process on T with exponent measure mα,σ;

• Pα,σ a Pareto process with index α > 0 and spectral measure σ, i.e.,

Pα,σ(t) = PαY (t), t ∈ T

where Pα has an α–Pareto distribution, i.e., P(Pα > r) = r−α, r ≥ 1, and is
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independent of the continuous process Y defined on T and whose distribution is

σ.

Note that mα,σ is boundedly finite and homogeneous of order −α, i.e.,

mα,σ(uA) = u−αmα,σ(A), u > 0, A ∈ B(C0) bounded.

The Poisson point measure Πα,σ can be seen as a random element of Mp(C0) and

might be defined as follows. Let {Γi}i≥1 be a Poisson point process on (0,+∞)

with Lebesgue intensity and, independently, let {Yi}i≥1 be a sequence of independent

processes with common distribution σ, then

Πα,σ =
∑
i≥1

δ
Γ
−1/α
i Yi

is a Poisson point process with intensity mα,σ. Similarly, the max-stable process

Mα,σ(t) = max
i≥1

Γ
−1/α
i Yi(t), t ∈ T,

is a max-stable process with exponent measure mα,σ.

Theorem 1. Let X1, X2, . . . be independent copies of a continuous random process

X on T . In item 3, we suppose furthermore that X has almost surely nonnegative

sample paths. The following statements are equivalent

1. X ∈ RVα,σ(C);

2. the following ŵ-convergence holds in M(C0)

tP{a(t)−1X ∈ ·} ŵ−→ mα,σ, as t→∞;
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3. the normalized point measure

Nn =
n∑
i=1

δXi/a(n)

converges weakly in Mp(C0) to the Poisson point measure Πα,β as n→∞;

4. the normalized sample maximum

Mn(t) = a(n)−1 max{X1(t), . . . , Xn(t)}, t ∈ T,

converges weakly in C to the max-stable random process Mα,σ as n→∞;

5. the conditional distribution of normalized exceedances

P
(
t−1X ∈ A | ‖X‖ > t

)
, A ∈ B(C),

converges weakly in C to the generalized Pareto process Pα,σ as n→∞.

Proof of Theorem 1. The equivalence 1 ⇔ 2 is due to Hult and Lindskog [13]. The

equivalence 1 ⇔ 3 ⇔ 4 is proved in Davis and Mikosch [6]. The equivalence 4 ⇔ 5

is a consequence of Theorem 4.1 in de Haan and Fereira [8], where the the domain of

attraction of general max-stable and Pareto processes are considered, and not only

the simple case where the max-stable processes have standard Fréchet margins. For

the convenience of the reader, we provide a direct and simple proof of the equivalence

1⇔ 5.

3 Peaks Over Thresholds and GPD processes

As explained in the introduction, the peaks over threshold approach amounts to

consider the conditional distribution of a random field X given that `(X) > u, where

u > 0 is the threshold level and ` : C → [0,+∞) is a homogeneous measurable cost
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functional associated to the threshold method.

3.1 GPD processes associated to the cost functional `

The following theorem provides several equivalent characterizations of the `-GPD

process and generalizes Theorem 2.1 of de Haan and Ferreira [8].

Theorem 2. Let W be a continuous stochastic process. The following three state-

ments are equivalent:

1. Constructive approach: for all t ∈ T , W (t) = PY (t) where

1a. Y is a continuous stochastic process such that `(Y ) ≡ 1;

1b. P is a Pareto random variable with tail index α > 0, i.e., P(P > u) = u−α,

u > 1;

1c. Y and P are independent.

2. Homogeneity property:

2a. P{`(W ) > 1} = 1;

2b. For all u ≥ 1 and measurable A ⊂ {f ∈ C : `(f) ≥ 1},

P(W ∈ uA) = u−αP(W ∈ A).

3. Peaks over threshold stability:

3a. P{`(W ) > 1} > 0;

3b. For all A ∈ B(C) and all u ≥ 1 such that P{`(W ) > u} > 0,

P{u−1W ∈ A | `(W ) > u} = P(W ∈ A).

For the constructive approach 1. we have necessarily P = `(W ) and Y = W/`(W )

and the tail index α is the same in 1b. and 2b. Characterization 3. is more implicit

and does not involve any tail index α.
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Definition 4. The distribution σ of W/`(W ) is called the spectral measure. The

process W is called a simple `–Pareto process with tail index α and spectral measure

σ and is denoted by W ∼ P `α,σ.

Proof of Theorem 2. We first prove that 1. ⇒ 2. Since P = `(W ), condition 2a.

follows trivially from 1b. Consider the set

Av,B = {f ∈ C : `(f) ≥ v, f/`(f) ∈ B}. (3)

with v ≥ 1 and B ⊂ {f ∈ C : `(f) = 1} measurable. Clearly,

P(W ∈ Av,B) = P(P ≥ v, Y ∈ B) = v−ασ(B).

Using the relation uAv,B = Auv,B, we obtain P(W ∈ uAv,B) = u−αP(W ∈ Av,B).

The sets of the form Av,B form a π-system and generate the σ-algebra of Borel sets

A ⊂ {f ∈ C : `(f) ≥ 1}. Hence condition 2b. holds for all Borel set A.

We prove that 2. ⇒ 3. Let A ⊂ C be a Borel set. Using conditions 2a. and 2b.,

we obtain

P{u−1W ∈ A, `(W ) > u} = u−αP{W ∈ A, `(W ) > 1} = u−αP(W ∈ A).

When A = C we have P{`(W ) > u} = u−α > 0 and whence

P{u−1W ∈ A | `(W ) > u} =
P{u−1W ∈ A, `(W ) > u}

P{`(W ) > u}
= P(W ∈ A).

It remains to check that 3.⇒ 1. Condition 3b. with A = {f ∈ C : `(f) > v} gives

P{`(W ) > uv} = P{`(W ) > u}P{`(W ) > v}, u, v ≥ 1,
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and hence the tail function u 7→ F̄ (u) = P{`(W ) > u} satisfies the functional equation

F̄ (uv) = F̄ (u)F̄ (v), u, v ≥ 1. (4)

Condition 3a. gives the initial condition F̄ (1) > 0. Clearly (4) implies F̄ (1) = F̄ (1)2

and the initial condition ensures that F̄ (1) = 1. We then prove that F̄ is positive on

[1,∞). Since F is right continuous and F̄ (∞) = 0, there exists some u0 > 1 such that

F̄ (u0) ∈ (0, 1). Using (4), we have for all n ≥ 1, F̄ (un0 ) = F̄ (u0)n > 0 and letting

un0 →∞, F̄ must be positive since it must be non-increasing.

Any non-increasing positive solution of the functional equation (4) must be of the

form F (u) = u−α for some α > 0. This proves that P = `(W ) satisfies condition

1b. Hence `(W ) is almost surely positive and Y = W/`(W ) satisfies condition 1a. It

remains to prove that P and Y are independent. To this aim, we consider B ∈ B(C)

and we set A = {f ∈ C : f/`(f) ∈ B}. Condition 3b. ensures that for all u ≥ 1,

P(Y ∈ B, P > u) = P{W ∈ A, `(W ) > u} = P{u−1W ∈ A, `(W ) > u}

= P(W ∈ A)P{`(W ) > u} = P(Y ∈ B)P(P > u),

and proves condition 1c.

3.2 Exceedances over high threshold and Pareto processes

The following result relates convergence of normalized exceedances over a high thresh-

old and Pareto processes. It relies on the peaks over threshold stability characteriza-

tion of Pareto processes.

Proposition 1. Assume that the cost functionnal ` : C → [0,+∞) is continuous and

let X be a stochastic process such that

P{u−1X ∈ · | `(X) > u} −→ P(W ∈ · ), u→∞,
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weakly in C.

Then either W is a simple `–Pareto process or P{`(W ) = 1} = 1.

Proof of Proposition 1. Let A = {f ∈ C : `(f) ≥ 1}. Clearly, P{u−1X ∈ A | `(X) >

u} = 1 for all u > 0. Furthermore, A is closed by the continuity of ` so that the

Portmanteau theorem implies

P(W ∈ A) ≥ lim sup
u→+∞

P{u−1X ∈ A | `(X) > u} = 1,

and hence `(W ) ≥ 1 almost surely.

We suppose that P{`(W ) = 1} < 1 and prove thatW is a simple `–Pareto process.

Clearly, in this case, P{`(W ) > 1} > 0 and condition 3a. of Theorem 2 is satisfied.

We prove that the limit W satisfies also the peak over threshold stability condition

3b. so that it must be a simple `–Pareto process. Clearly, for all u1, u2 ≥ 1 and all

set Av,B of the form (3), we have

P{u−1
1 u−1

2 X ∈ Av,B, `(u−1
1 X) > v | `(X) > u1}

= P{u−1
1 u−1

2 X ∈ Av,B | `(X) > u1u2}P{`(u−1
1 X) > u2 | `(X) > u1}.

As u1 →∞ the weak convergence entails

P{u−1
2 W ∈ Av,B, `(W ) > u2} = P(W ∈ Av,B)P{`(W ) > u2}, (5)

provided P{`(W ) = v} = 0 and P{W/`(W ) ∈ ∂B} = 0. Indeed since ` is continuous,

the boundary set of {f ∈ C : `(f) > v} is {f ∈ C : `(f) = v}. Using regularity

properties, (5) is extended to all v ≥ 1 and all A ∈ B(C), and hence W satisfies

condition 3b.

Theorem 3. Suppose that X ∈ RVα,σ(C). If ` is continuous at the origin and does
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not vanish σ–a.e., then

P{u−1X ∈ · | `(X) > u} −→ P `σ`,α(·), u→∞,

weakly in C and the spectral measure σ` is given by

σ`(B) =
1

c`

∫
S
`(f)α1{f/`(f)∈B} σ(df), B ∈ B(C), (6)

with c` =
∫
S `(f)ασ(df).

Proof of Theorem 3. In order to use regular variations, we take u = a(t) as the nor-

malizing constant in Definition 1 and let t → ∞. It is enough to prove that for all

bounded continuous functional F : C → R we have

tE
[
F{a(t)−1X}1{`(X)>a(t)}

]
−→ c`E{F (Y )}, t→∞, (7)

with Y ∼ P `α,σ` . Indeed, taking F ≡ 1 implies

tP{`(X) > a(t)} −→ c`, t→∞.

Since ` is nonnegative and does not vanish σ–a.e., c` > 0 and we have

E
[
F (u−1X)1{`(X)>u}

]
P{`(X) > u}

−→ E{F (Y )}, u→∞,

and proves the required weak convergence. We prove (7). Using the homogeneity of

`, we have

tE
[
F{a(t)−1X}1{`(X)>a(t)}

]
= tE

[
F̃{a(t)−1X}

]
, (8)

with F̃ (f) = F (f)1{`(f)>1}. According to Theorem 1, X ∈ RVα,σ(C) implies the
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ŵ-convergence tP{a(t)−1X ∈ ·} → mα,β(·) in C0 and therefore we have

tE
[
F̃{a(t)−1X}

]
−→

∫
C0
F̃ (f)mα,σ(df), (9)

provided that F̃ has a bounded support in C0 and is continuous mα,σ–a.e. We will

check these conditions later. The right hand side of (9) is equal to

∫ ∞
0

∫
S
F̃ (rf)αr−α−1drσ(df) =

∫ ∞
0

∫
S
F (rf)1{r`(f)>1} αr

−α−1drσ(df). (10)

On the other hand, the right hand side of (7) can be computed using a simple change

of variable

∫ ∞
1

∫
S`
F (rf)αr−α−1drc`σ`(df) =

∫ ∞
0

∫
S

1{r>1}F (rf/`(f))`(α)α αr−α−1drσ(df)

=

∫ ∞
0

∫
S

1{r`(f)>1}F (rf)αr−α−1drσ(df). (11)

Equations (8)–(11) imply (7) and it remains to prove that F̃ has a bounded support

in C0 and is continuous mα,σ–a.e. The continuity and homogeneity of ` implies that

there exists someM > 0 such that `(f) ≤M‖f‖ for all f ∈ C. Hence `(f) > 1 implies

‖f‖ > M−1 and the support of F̃ is included in [M−1,+∞] × S and is bounded in

C0. Furthermore since F is continuous, f 7→ F̃ (f) = F (f)1{`(f)>1} is continuous at

every point f such that `(f) 6= 1. Finally we have that

mα,σ({`(f) = 1}) =

∫ ∞
0

1{r`(f)=1} αr
−α−1drσ(df) = 0,

and F̃ is continuous mα,σ–a.e.

When different functionals ` and `′ are involved, the corresponding spectral mea-

sures σ` and σ`′ defined by (6) are linked by a simple relation.

Proposition 2. Let ` and `′ be homogeneous measurable functionals C → [0,+∞)
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and suppose that `′(f) > 0 σ`–a.e. Then,

σ`(B) =

∫
B(C) `(f)α1{f/`(f)∈B} σ`′(df)∫

B(C) `(f)α σ`′(df)
, B ∈ B(C). (12)

As a direct consequence, if `(f) > 0 σ–a.e., then (6) can be inverted and we have

σ(B) = c`

∫
S`
‖f‖α1{f/‖f‖∈B}σ`(df), B ∈ B(S). (13)

Proof of Proposition 2. Using the definition of σ` and σ`′ , we have for B ∈ B(C),

∫
B(C)

`(f)α1{f/`(f)∈B} σ`′(df) =
1

c`′

∫
B(C)

`′(f)α{`(f)/`′(f)}α1{f/`(f)∈B} σ(df)

=
c`
c`′
σ`(B),

where we used in the last equality the fact that `′(f) > 0 σ`–a.e. Taking B = C, we

get

c` = c`′

∫
`(f)ασ`′(df)

and (12) follows easily.

4 Estimation of spectral measures

Under the assumptions of Theorem 3, we consider a natural non-parametric estimator

of the spectral measure σ` in (6) associated to the regularly varying random field

X ∈ RVα,σ. It is based on independent copies X1, X2, . . . of X, and especially on

exceedances over large thresholds, i.e., such that `(Xi) > un for some large threshold

level un.

Proposition 3. Suppose that X ∈ RVα,σ and that ` is continuous at the origin

and does not vanish σ–a.e. Consider a sequence un > 0 such that un → ∞ and
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un/a(n)→ 0, with a(·) given by (2). Then

σ̂`,n =

∑n
i=1 1{`(Xi)>un}δXi/`(Xi)∑n

i=1 1{`(Xi)>un}
, n ≥ 1,

is a consistent estimator of the spectral measure σ` in the sense that σ̂`,n(B) converges

in probability as n→ +∞ to σ`(B) for all B ∈ B(C) such that σ`(∂B) = 0.

In some applications, it may happen that the observations are obtained by thresh-

olding with respect to a functional `′ different from the functional ` of interest. Propo-

sitions 2 and 3 suggest the following generalized estimator.

Proposition 4. Suppose that X ∈ RVα,σ. Let ` and `′ be homogeneous functionals

C → [0,+∞) such that

• `′ is continuous at the origin and does not vanish σ–a.e.

• ` is continuous and satisfies ` ≤M`′ for some M > 0.

Consider a sequence un > 0 such that un → ∞ and un/an → 0 with a(·) given by

(2). Then

σ̃`,n =

∑n
i=1 {`(Xi)/`

′(Xi)}α 1{`′(Xi)>un}δ{Xi/`(Xi)}∑n
i=1 {`(Xi)/`′(Xi)}α 1{`′(Xi)>un}

.

is a consistent estimator of σ`.

Proof of Proposition 3. Let Nn =
∑n

i=1 1{`(Xi)>un)} be the number of observations

above threshold un in the sample X1, . . . , Xn. The estimator σ̂`,n is well defined as

soon as Nn > 0. If Nn = 0, define σ̂`,n = σ0 with σ0 an arbitrary probability measure.

The choice of σ0 is irrelevant from an asymptotic point of view since we will see that

P(Nn = 0)→ 0 as n→∞.

ClearlyNn has a binomial distribution with parameters n and pn = P{`(X) > un}.

In particular, Nn has mean npn and variance npn(1 − pn). The conditions un → ∞

and un/an → 0 imply pn → 0 and npn → ∞. Since Nn/(npn) has mean 1 and its

variance goes to 0 as n→∞, Nn/(npn) converges in probability to 1.
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Let B ∈ B(C) such that σ`(∂B) = 0 and define pn,B = P{`(X) > un, X/`(X) ∈

B}. The normalized sum

1

npn

n∑
i=1

1{`(Xi)>un, Xi/`(Xi)∈B} (14)

has expectation pn,B/pn and variance pn,B(1 − pn,B)/(np2
n). Theorem 3 combined

with the condition σ`(∂B) = 0 yields

pn,B
pn

= P{X/`(X) ∈ B | `(X) > un} −→ σ`(B), n→∞.

Since
pn,B(1− pn,B)

np2
n

∼ σ`(B)

npn
−→ 0,

(14) converges in probability to σ`(B) as n→∞.

Finally, the expression

σ̂`,n(B) =
npn
Nn

1

npn

[
n∑
i=1

1{`(Xi)>vn, Xi/`(Xi)∈B}

]
1{Nn>0} + σ01{Nn=0},

and the convergences in probability mentioned above combined with Slutsky’s lemma

imply σ̂`,n(B)→ σ`(B) in probability and proves Proposition 3.

Proof of Proposition 4. According to Proposition 2,

σ`(B) =

∫
`(f)α1{f/`(f)∈B} σ`′(df)∫

`(f)α σ`′(df)
, B ∈ B(C). (15)

The estimator σ̃`,n is obtained by replacing σ`′ in this expression by the non-parametric

estimator σ̂`′,n from Proposition 3:

σ̃`,n(B) =

∫
`(f)α1{f/`(f)∈B} σ̂`′,n(df)∫

`(f)α σ̂`′,n(df)
, B ∈ B(C). (16)

As a consequence of Proposition 3, the probability measures σ̂`′,n converge in probabil-
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ity as n→∞ to σ`′ in the space of probability measures on C endowed with the metric

of weak convergence. This entails the convergence in probability
∫
F (f)σ̂`′,n(df) →∫

F (f)σ`′(df) for all functional F that are bounded and continuous σ`′–a.e.

Let B ∈ B be such that σ`(∂B) = 0 and consider the particular choice FB(f) =

`(f)α1{f/`(f)∈B}. The condition ` ≤ M`′ entails FB(f) ≤ Mα for all f such that

`′(f) = 1. Since ` is continuous, FB is continuous except at points f such that

f/`(f) ∈ ∂B. It is easily checked that the condition σ`(∂B) = 0 implies σ`′({f/`(f) ∈

∂B}) = 0 so that FB is continuous σ`′–a.e. Hence, we get

∫
`(f)α1{f/`(f)∈B} σ̂`′,n(df)

P−→
∫
`(f)α1{f/`(f)∈B} σ̂`′(df), n→∞

and similarly

∫
`(f)ασ̂`′,n(df)

P−→
∫
`(f)α1{f/`(f)∈B} σ̂`′(df), n→∞.

Then (15)–(16) and Slutsky’s Lemma imply that σ̃`,n(B)→ σ`(B) in probability.

5 Examples of regularly varying random fields

We review some standard examples of regularly varying random fields, following sec-

tion 4.1 in Davis and Mikosh [6].

• Simple multiplicative processes.

Consider the C-valued random process X(t) = ηY (t), t ∈ T , where η and Y are

independent and such that

– η is a non-negative regularly varying random variable with index α > 0,

– Y is a sample continuous random field on T .

Assume that one of the following conditions is satisfied

i) E
(
‖Y ‖α+δ

)
<∞ for some δ > 0;
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ii) E (‖Y ‖α) <∞ and P(η > x) ∼ Cx−α for some C > 0 as x→∞.

Then, according to section 4.1 in [6], the process X is regularly varying on C

with index α and spectral measure given by

σ(A) =
E
[
‖Y ‖α1{Y/‖Y ‖∈A}

]
E[‖Y ‖α]

, A ∈ B(S). (17)

• Symmetric α-stable processes.

Any sample continuous symmetric α-stable processes on T can be represented

as a LePage series

X(t) =
∞∑
i=1

Γ
−1/α
i Yi(t), t ∈ T, (18)

where α ∈ (0, 2) and the sequences {Γi}i≥1 and {Yi}i≥1 are independent and

such that

– the sequence {Γi}i≥1 is the non decreasing enumeration of the points of a

Poisson Point Process with Lebesgue intensity on (0,+∞),

– the Yi are independent copies of a C-valued symmetric random fields Y .

Such random fields are regularly varying on C with index α and spectral measure

σ given by (17). The normalizing sequence {an}n≥1 satisfies

an ∼ E (‖Y ‖α)1/α n1/α, n→∞. (19)

For more details on symmetric α-stable random fields, the reader should refer

to Samorodnitsky and Taqqu [18] or Ledoux and Talagrand [15].

• Max-stable processes.

Any sample continuous simple max-stable processes on T with α-Fréchet mar-

gins, α > 0, can be represented as

X(t) = max
i≥1

Γ
−1/α
i Yi(t), t ∈ T, (20)

20



with the sequences {Γi}i≥1 and {Yi}i≥1 as in (18). Conversely, the infinite

maximum (20) converges almost surely in C if and only if E (‖Y ‖α) < ∞ and

for such cases the limit X is a sample continuous max-stable process on C with

α-Fréchet margins

P{X(t) ≤ x} = exp
[
−E {Y (t)α}x−α

]
, x > 0, t ∈ T.

Max-stable random fields are regularly varying on C with index α and spectral

measure σ given by (17) and the renormalising sequence {an}n≥1 satisfies (19).
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