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Spatial extremes
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Max-i.d. processes
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Definition 1. A process Z defined on a compact metric space X is max-i.d. in
C (X ) if it is sample continuous and for each n ∈N, there exists independent
identically distributed sample continuous processes Zi ,n such that

Z
d= max

i=1,...,n
Zi ,n , n ∈N, (1)

where
(

max Zi ,n
)

(x) = max Zi ,n(x) for all x ∈X .

Remark. If (1) holds with

Zi ,n =
Zi −bn

an
,

for some continuous functions an > 0 and bn ∈R and where Zi are
independent copies of Z , then Z is said to be max-stable.



Spectral characterization
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Theorem 1 (de Haan 1984 & Giné, Hahn and Vatan 1990). Let Z be a max-.i.d.

process on X such that ess inf Z (x) ≡ 0. Then there exists a unique σ–finite

measure Λ on C0 =C {X , [0,∞)} \ {0} such that

Z
d= max

ϕ∈Φ
ϕ,

where Φ is a Poisson point process on C0 with intensity measure Λ.

Remark. If Z is max-stable with unit Fréchet margins, i.e.,
Pr{Z (x) ≤ z} = exp(−1/z), z > 0, then

dΛ= ζ−2dζdσ,

where σ is a finite measure on C1 = { f ∈C0 : ‖ f ‖= 1} such that

∫

C1

f (x)dσ( f ) = 1, x ∈X .



Spectral measure
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ä The specific form of the intensity measure dΛ= ζ−2dξ dσ is well known in
extreme value theory.

ä It factorizes into a radial part ζ−2 and an angular part σ using the bijection

C0 −→ (0,∞)×C1

f 7−→ ( ‖ f ‖
︸︷︷︸

radial

, f /‖ f ‖
︸ ︷︷ ︸

angular

).

ä The measure σ is called the spectral measure and characterizes the spatial
dependence of extremes—independently from the radius.

� For statistical purposes, it is often more convenient to “think of” σ as the
distribution of a non-negative, sample continuous stochastic process Y such
that E{Y (x)} = 1, x ∈X .



Smith’s model (1990)
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ϕi (x) = ζiφ (x −Ui ;0,Σ) , x ∈X ,

where {(ζi ,Ui )}i≥1 are the points of a Poisson process on (0,∞)×R
d with

intensity measure dΛ(ζ,u) = ζ−2dζ du and φ(·;0,Σ) is the centered d–variate
normal density with covariance matrix Σ.
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Figure 1: One realization from a Smith process on [−10,10] with Σ= 3.



Schlahter’s model (2002)
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ϕi (x) =
p

2πζi max{0,εi (x)}, x ∈X ,

where {ζi }i≥1 are the points of a Poisson process on (0,∞) with intensity
measure dΛ(ζ) = ζ−2dζ and εi independent copies of a standard Gaussian
process.
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Figure 2: One realization from a Schlather process on [−10,10] with correlation function ρ(h) = exp(−h/3).



Brown–Resnick processes (2009)
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ϕi (x) = ζi exp{εi (x)−γ(x)}, x ∈X ,

where {ζi }i≥1 are the points of a Poisson process on (0,∞) with intensity
measure dΛ(ζ) = ζ−2dζ and εi independent copies of a centered Gaussian
process with semi variogram γ.
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Figure 3: One realization from a Brown–Resnick process on [−10,10] with semi variogram γ(h) =
p

h/3.



Pairwise likelihood

Conditional simulations of max-stable processes Mathieu Ribatet – 9 / 50

Let x ∈X
k and z = (0,∞)k , then

Pr{Z (x) ≤ z}= exp
[

−Λ{(0,z)c }
]

= exp{−V (z)}.

�



Pairwise likelihood
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Let x ∈X
k and z = (0,∞)k , then

Pr{Z (x) ≤ z}= exp
[

−Λ{(0,z)c }
]

= exp{−V (z)}.

In particular when

k = 2: f (z) = (V1V2 −V12)exp{−V (z)}
k = 3: f (z) = (−V1V2V3 +V12V3 +V13V2 +V1V23 −V123)exp{−V (z)}
k = n : f (z) = (sum of many many terms)exp{−V (z)}

� Use of the maximum pairwise likelihood estimator

θ̂p = argmax
θ∈Θ

k−1∑

i=1

k∑

j=i+1
ωi , j ln f (zi , z j ;θ).



Setup
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ä Let Z be a max-stable process defined on X with unit Fréchet margins.
ä We observe Z at some conditioning locations x = (x1, . . . , xk ) ∈X

k giving
rise to some (critical) values z = (z1, . . . , zk ) ∈ (0,∞)k .

X

x1
•

x2
•

x3
•

x4
•

z1×
z2×

z3×
z4×

�
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ä Let Z be a max-stable process defined on X with unit Fréchet margins.
ä We observe Z at some conditioning locations x = (x1, . . . , xk ) ∈X

k giving
rise to some (critical) values z = (z1, . . . , zk ) ∈ (0,∞)k .

X

x1
•

x2
•

x3
•

x4
•

z1×
z2×

z3×
z4×

�Our goal is to sample from Z (·) | {Z (x1) = z1, . . . , Z (xk ) = zk }.



Outline
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1. Conditional distributions

2. MCMC sampler

3. Simulation Study

4. Applications
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Z (x) = max
ϕ∈Φ

ϕ(x), x ∈X

ä Consider the two following Poisson point processes

Φ
− =

{

ϕ ∈Φ : ϕ(xi ) < zi , for all i ∈ {1, . . . ,k}
}

, (sub-extremal functions)

Φ
+ =

{

ϕ ∈Φ : ϕ(xi ) = zi , for some i ∈ {1, . . . ,k}
}

.(extremal functions)

ä Clearly Φ=Φ
−∪Φ

+.

�
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Z (x) = max
ϕ∈Φ

ϕ(x), x ∈X

ä Consider the two following Poisson point processes

Φ
− =

{

ϕ ∈Φ : ϕ(xi ) < zi , for all i ∈ {1, . . . ,k}
}

, (sub-extremal functions)

Φ
+ =

{

ϕ ∈Φ : ϕ(xi ) = zi , for some i ∈ {1, . . . ,k}
}

.(extremal functions)

ä Clearly Φ=Φ
−∪Φ

+.

� Key point #1: Conditionally on Z (x) = z, Φ− and Φ
+ are inde-

pendent.
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ä The atoms of Φ+ are only of interest if we restrict our attention
to the conditioning points x;

ä But most often one would like to get realizations at s 6= x.

� The atoms of Φ− are needed since it is likely that
maxΦ−(s) > maxΦ+(s)!
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Z (x) = max
i≥1

ϕi (x), x = (x1, . . . , xk ).

ä The Poisson point process {ϕi (x)}i≥1 has intensity measure

Λx(A) =
∫∞

0
Pr{ζY (x) ∈ A}ζ−2dζ, Borel set A ⊂R

k .

ä We assume that Φ is regular, i.e., Λx(dz) =λx(z)dz, for all
x ∈X

k .

�
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Z (x) = max
i≥1

ϕi (x), x = (x1, . . . , xk ).

ä The Poisson point process {ϕi (x)}i≥1 has intensity measure

Λx(A) =
∫∞

0
Pr{ζY (x) ∈ A}ζ−2dζ, Borel set A ⊂R

k .

ä We assume that Φ is regular, i.e., Λx(dz) =λx(z)dz, for all
x ∈X

k .

� Key point #2: The conditional intensity function

λx1|x2,z2 (u) =
λ(x1,x2)(u,z2)

λx2 (z2)
, x = (x1,x2), z = (z1,z2),

characterizes (up to a truncation) the distribution of the extremal
functions.
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Here the set {x1, . . . , x5} is partitioned into ({x1, x3}, {x2}, {x4}, {x5})
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Here the set {x1, . . . , x5} is partitioned into ({x1, x3}, {x2}, {x4}, {x5})

ä The hitting bounds {zi }i=1,...,k might be reached by several
extremal functions, i.e., Φ+ = {ϕ+

1 , . . . ,ϕ+
k

} = {ϕ+
1 , . . . ,ϕ+

ℓ
} a.s.,

1 ≤ ℓ≤ k.
ä So we need to take into account all possible ways these hitting

bounds are reached: the hitting scenarios
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ä This suggests a three step sampling scheme:
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ä This suggests a three step sampling scheme:

Step 1 Draw a random partition τ, i.e., a hitting scenario;
Step 2 Given τ of size ℓ, draw the extremal functions
ϕ+

1 , . . . ,ϕ+
ℓ

independently;
Step 3 Independently from Steps 1 & 2, draw the

sub-extremal functions ϕ−
i

, i ≥ 1.
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ä Let Pk the set of all possible partitions of the set {x1, . . . , xk }.
ä Draw a random partition τ ∈Pk with distribution

πx(z,τ) =
1

C (x,z)

|τ|∏

j=1
λxτ j

(zτ j
)

︸ ︷︷ ︸

density that some
bounds are reached,

i.e., the zτ j

∫

{u<zτc
j
}
λxτc

j
|xτ j

,zτ j
(u)du

︸ ︷︷ ︸

probability to lie below
the remaining bounds, i.e.,

below the z
τc

j

,

where the normalization constant C (x,z) is given by

C (x,z) =
∑

θ∈Pk

|θ|∏

j=1
λxθ j

(zθ j
)
∫

{u<zθc
j
}
λxθc

j
|xθ j

,zθ j
(u)du,

and |τ| is the “size” of the partition τ.
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ä Given τ= (τ1, . . . ,τℓ), draw ℓ independent random vectors
ϕ+

1 (s), . . . ,ϕ+
ℓ

(s) from the distribution

Pr
[

ϕ+
j (s)∈ dv j

]

=
1

C j

{∫

1{u<zτc
j
} λ(s,xτc

j
)|xτ j

,zτ j
(v j ,u)

︸ ︷︷ ︸

density of an atom ϕ ∈Φ

given that ϕ(xτ j
) = zτ j

du

}

dv j ,

where 1{·} is the indicator function and

C j =
∫

1{u<zτc
j
}λ(s,xτc

j
)|xτ j

,zτ j
(v j ,u)dudv j .

ä Define the random vector

Z+(s) = max
j=1,...,ℓ

ϕ+
j (s), s ∈X

m .
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ä Independently

Z−(s) = max
ϕ∈Φ

ϕ(s)1{ϕ(s)<z}, s ∈X
m .

�
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ä Independently

Z−(s) = max
ϕ∈Φ

ϕ(s)1{ϕ(s)<z}, s ∈X
m .

� Then provided Φ is regular, the random vector

Z̃ (s) = max
{

Z+(s), Z−(s)
}

follows the conditional distribution of Z (s) given Z (x) = z.
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ä The conditional cumulative distribution function is

Pr {Z (s)≤ a | Z (x)= z} =
{

∑

τ∈Pk

πx(z,τ)
|τ|∏

j=1
Fτ, j (a)

}

︸ ︷︷ ︸

Steps 1 & 2

Pr[Z (s)≤ a, Z (x)≤ z]

Pr[Z (x) ≤ z]
︸ ︷︷ ︸

Step 3

,

where

Fτ, j (a) =

∫

{y<zτc
j
,u<a}λ(s,xτc

j
)|xτ j

,zτ j
(u,y)dydu

∫

{y<zτc
j
}λtτc

j
|xτ j

,zτ j
(y)dy

.
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ä The conditional cumulative distribution function is

Pr {Z (s)≤ a | Z (x)= z} =
{

∑

τ∈Pk

πx(z,τ)
|τ|∏

j=1
Fτ, j (a)

}

︸ ︷︷ ︸

Steps 1 & 2

Pr[Z (s)≤ a, Z (x)≤ z]

Pr[Z (x) ≤ z]
︸ ︷︷ ︸

Step 3

,

where

Fτ, j (a) =

∫

{y<zτc
j
,u<a}λ(s,xτc

j
)|xτ j

,zτ j
(u,y)dydu

∫

{y<zτc
j
}λtτc

j
|xτ j

,zτ j
(y)dy

.

Remark. It is “clear” that Z (·) | {Z (x) = z} is not max-stable.
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Example 1 (Brown–Resnick process).

Z (x) = max
i≥1

ζi exp{εi (x)−γ(x)}, x ∈X .

The intensity function is

λx(z) =Cx exp

(

−
1

2
logzT Qx logz+Lx logz

) k∏

i=1
z−1

i , z ∈ (0,∞)k ,

and the conditional intensity function is

λs|x,z(u) = (2π)−m/2|Σs|x|−1/2 exp

{

−
1

2
(logu−µs|x,z)T

Σ
−1
s|x(logu−µs|x,z)

} m∏

i=1
u−1

i ,

i.e., the extremal functions are log-Normal processes.
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Example 2 (Schlather process).

Z (x) =
p

2πmax
i≥1

ζi max{0,εi (x)}, x ∈X .

The intensity function is

λx(z) =π−(k−1)/2|Σx|−1/2ax(z)−(k+1)/2
Γ

(
k +1

2

)

, z ∈R
k ,

where ax(z) = zT
Σ
−1
x z, and the conditional intensity function is

λs|x,z(u) =π−m/2(k +1)−m/2|Σ̃|−1/2

{

1+
(u−µ)T

Σ̃
−1(u−µ)

k +1

}−(m+k+1)/2 Γ

(
m+k+1

2

)

Γ

(
k+1

2

) ,

i.e., the extremal functions are Student processes.
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1 1 2 5 15
52 203 877 4140 21147

115975 678570 4213597 27644437 190899322
1382958545 10480142147 82864869804 682076806159 5832742205057

. . .

� These are the first 20 Bell numbers.

Remark. Recall that Bell(k) is the number of par-
titions of a set with k elements.

# hitting scenarios= Card(Pk ) = Bell(k)
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ä In Step 1, we need to sample from a discrete distribution
whose state space is Pk , i.e., all possible hitting scenarios.

LLL Combinatorial explosion LLL

Hence we cannot compute C (x,z) in

πx(z,τ) =
1

C (x,z)

|τ|∏

j=1
λxτ j

(zτ j
)
∫

{u<zτc
j
}
λxτc

j
|xτ j

,zτ j
(u)du.

�
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ä In Step 1, we need to sample from a discrete distribution
whose state space is Pk , i.e., all possible hitting scenarios.

LLL Combinatorial explosion LLL

Hence we cannot compute C (x,z) in

πx(z,τ) =
1

C (x,z)

|τ|∏

j=1
λxτ j

(zτ j
)
∫

{u<zτc
j
}
λxτc

j
|xτ j

,zτ j
(u)du.

� Use of MCMC samplers to sample from the target πx(z, ·).

ä We will use a Gibbs sampler that generates a Markov chain

{θn ∈Pk : n ∈N}

whose invariant distribution is πx(z, ·).
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Our (random scan) Gibbs sampler amounts to sample from the
full conditional distributions

Pr(θ ∈ · | θ− j = τ− j ), θ ∼πx(z, ·), j = 1, . . . ,k,

where τ− j drops the j -th location x j in τ.
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Our (random scan) Gibbs sampler amounts to sample from the
full conditional distributions

Pr(θ ∈ · | θ− j = τ− j ), θ ∼πx(z, ·), j = 1, . . . ,k,

where τ− j drops the j -th location x j in τ.

θ0 : {x1, x3} {x2, x5} {x4}

θ1 : {x1, x3} {x2} {x5} {x4}

{x1, x3, x4} {x2} {x5} {;}
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Our (random scan) Gibbs sampler amounts to sample from the
full conditional distributions

Pr(θ ∈ · | θ− j = τ− j ), θ ∼πx(z, ·), j = 1, . . . ,k,

where τ− j drops the j -th location x j in τ.

θ0 : {x1, x3} {x2, x5} {x4}

θ1 : {x1, x3} {x2} {x5} {x4}

θ2 : {x1, x3, x4} {x2} {x5}



Full conditional distributions

1. Conditional
distributions

2. MCMC sampler

Computational
burden

⊲
Full conditional
distributions

If the full conditional
distributions are nice,
. . .
. . . the state space
Pk isn’t! (really?)

3. Simulation Study

4. Applications

Conditional simulations of max-stable processes Mathieu Ribatet – 27 / 50

Our (random scan) Gibbs sampler amounts to sample from the
full conditional distributions

Pr(θ ∈ · | θ− j = τ− j ), θ ∼πx(z, ·), j = 1, . . . ,k,

where τ− j drops the j -th location x j in τ.

θ0 : {x1, x3} {x2, x5} {x4}

θ1 : {x1, x3} {x2} {x5} {x4}

θ2 : {x1, x3, x4} {x2} {x5}

...

θN : {x1, x5} {x2} {x3, x4}
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ä For all τ∗ ∈Pk such that τ∗− j
= τ− j ,

Pr[θ = τ∗ | θ− j = τ− j ] =
πx(z,τ∗)

∑

τ̃∈Pk

πx(z, τ̃)1{τ̃− j =τ− j }
∝

∏|τ∗|
j=1 wτ∗, j

∏|τ|
j=1 wτ, j

,

where wτ, j =λxτ j
(zτ j

)
∫

{u<zτc
j
}λxτc

j
|xτ j

,zτ j
(u)du.

� In particular at most 4 weights w·,· need to be evaluated and
the Gibbs sampler is especially convenient!
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� But how do I implement a Gibbs sampler whose states are
partitions of a set???
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� But how do I implement a Gibbs sampler whose states are
partitions of a set???

Lemma 1. There is a one-one mapping between Pk and

P
∗
k =

{

(a1, . . . , ak ), ∀i ∈ {2, . . . ,k} : a1 ≤ ai ≤ max
1≤ j<i

a j +1, ai ∈Z

}

,

where a1 = 1 by convention.

Example 3. ({x1, x2}, {x3}) is identified to (1,1,2) while
({x1, x3}, {x2}) is identified to (1,2,1).
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t

τ t

(1,1,1,1,1)

(1,1,2,1,1)

(1,2,1,2,2)

(1,2,2,2,2)

(1,2,3,2,2)

Partition size
1 2 3 4 5

Probability mass function

0.0 0.2 0.4 0.6 0.8 1.0

Weights (χ6
2 = 5.94, p − value = 0.43)

Theoretical Empirical

Figure 4: Left: Trace plot of one simulated Markov chain with k = 5 conditioning locations.
Right: Comparison of the theoretical probabilities {πx(z,τ),τ ∈ Pk } to the empirical ones
estimated from the simulated Markov chain.
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ä Less variability in regions close to some conditioning points;
ä The coverage is OK, i.e., pointwise confidence intervals have

the nominal coverage;
ä “Unconditional like behavior” in regions far away from any

conditioning point.
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Table 1: Spatial dependence structures of Brown–Resnick processes with (semi) variogram
γ(h) = (h/λ)κ. The variogram parameters are set to ensure that the extremal coefficient
function satisfies θ(115)= 1·7.

Sample path properties
γ1: Very wiggly γ2: Wiggly γ3: Smooth

λ 25 54 69
κ 0·5 1·0 1·5
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Figure 5: Three realizations of a Brown–Resnick process with standard Gumbel margins
and (semi) variogramsγ1, γ2 and γ3. The squares correspond to the 15 conditioning values
that will be used in the simulation study. The right panel shows the associated extremal
coefficient functions.
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Table 2: Spatial dependence structures of Schlather processes with correlation function
ρ(h) = exp{−(h/λ)κ}. The correlation function parameters are set to ensure that the ex-
tremal coefficient function satisfies θ(100) = 1·5.

Sample path properties
ρ1: Very wiggly ρ2: Wiggly ρ3: Smooth

λ 208 144 128
κ 0·5 1·0 1·5
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Figure 6: Three realizations of a Schlather process with standard Gumbel margins and cor-
relation functions ρ1, ρ2 and ρ3. The squares correspond to the 15 conditioning values
that will be used in the simulation study. The right panel shows the associated extremal
coefficient functions.
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Figure 7: Pointwise sample quantiles (0.025, 0.5, 0.975) estimated from 1000 conditional
simulations of Brown–Resnick processes.
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Figure 8: Pointwise sample quantiles (0.025, 0.5, 0.975) estimated from 1000 conditional
simulations of Schlather processes.



One last point ;-)

1. Conditional
distributions

2. MCMC sampler

3. Simulation Study

Checking the Gibbs
sampler

What we expect

Test cases

Test case: Schlather

What we get

⊲
Spatial
dependence

CPU times

4. Applications

Conditional simulations of max-stable processes Mathieu Ribatet – 37 / 50

ä Is the spatial dependence correct?
ä Want to compare the theoretical extremal coefficient function

θ(·) to the pairwise extremal coefficient estimates.

� But recall, Z (·) | {Z (x) = z} is not max-stable and the extremal
coefficient function does not exist!!!
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ä Is the spatial dependence correct?
ä Want to compare the theoretical extremal coefficient function

θ(·) to the pairwise extremal coefficient estimates.

� But recall, Z (·) | {Z (x) = z} is not max-stable and the extremal
coefficient function does not exist!!!

Since

f (x) =
∫

f (x | y) f (y)dy ,

and to recover the max-stability property, we

1. Generate 1000 independent conditional events;
2. For each such conditional event, one conditional realization.
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Figure 9: Comparison of the extremal coefficient estimates (using a binned F -madogram
with 250 bins) and the theoretical extremal coefficient function for a varying number of
conditioning locations and different (semi) variograms. From left to right, k = 5,10,15. The
’o’, ’+’ and ’x’ symbols correspond respectively to γ1, γ2 and γ3. The solid, dashed and
dotted grey lines correspond to the theoretical extremal coefficient functions for γ1,γ2 and
γ3.
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Figure 10: Comparison of the extremal coefficient estimates (using a binned F -madogram
with 250 bins) and the theoretical extremal coefficient function for a varying number of
conditioning locations and different correlation functions. From left to right, k = 5,10,15.
The ’o’, ’+’ and ’x’ symbols correspond respectively to ρ1, ρ2 and ρ3.
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Table 3: Timings† for conditional simulations of max-stable processes on a 50×50 grid defined on the square
[0,100×21/2]2 for a varying number k of conditioning locations uniformly distributed over the region. The
times, in seconds, are mean values over 100 conditional simulations; standard deviations are reported in
brackets.

Brown–Resnick: γ(h) = (h/25)0·5 Schlather: ρ(h) = exp
{

−(h/208)0·50}

Step 1 Step 2 Step 3 Overall Step 1 Step 2 Step 3 Overall
k = 5 0·21 (0·01) 49 (11) 1·4 (0·1) 50 (11) 1·4 (0·02) 1·9 (0·7) 0·9 (0·3) 4·2 (0·8)
k = 10 8 (2) 76 (18) 1·4 (0·1) 85 (19) 12 (4) 2·4 (0·8) 1·0 (0·3) 15 (4)
k = 25 95 (38) 117 (30) 1·4 (0·1) 214 (61) 86 (42) 4 (1) 1·0 (0·3) 90 (43)
k = 50 583 (313) 348 (391) 1·5 (0·1) 931 (535) 367 (222) 62 (113) 1·0 (0·3) 430 (262)

†Conditional simulations with k = 5 do not use a Gibbs sampler.
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ä We re-analyze the data of Davison et al. (2012), i.e., summer
precipitation around Zurich.
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Figure 11: Left: Map of Switzerland showing the stations of the 24 rainfall gauges used for
the analysis, with an insert showing the altitude. The station marked with a blue square
corresponds to Zurich. Middle: Summer maximum daily rainfall values for 1962–2008 at
Zurich. Right: Comparison between the pairwise extremal coefficient estimates for the
51 original weather stations and the extremal coefficient function derived from a fitted
Brown–Resnick processes having (semi) variogram γ(h) = (h/λ)κ. The grey points are pair-
wise estimates; the black ones are binned estimates and the red curve is the fitted extremal
coefficient function.
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ä We fit a Brown–Resnick process by maximizing the pairwise
likelihood with the following trend surfaces

η(x) =β0,η+β1,ηlon(x)+β2,ηlat(x),

σ(x) =β0,σ+β1,σlon(x)+β2,σlat(x),

ξ(x) =β0,ξ,

where η(x),σ(x),ξ(x) are the location, scale and shape
parameters of the generalized extreme value distribution and
lon(x), lat(x) the longitude and latitude of the stations at
which the data are observed.
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ä We fit a Brown–Resnick process by maximizing the pairwise
likelihood with the following trend surfaces

η(x) =β0,η+β1,ηlon(x)+β2,ηlat(x),

σ(x) =β0,σ+β1,σlon(x)+β2,σlat(x),

ξ(x) =β0,ξ,

where η(x),σ(x),ξ(x) are the location, scale and shape
parameters of the generalized extreme value distribution and
lon(x), lat(x) the longitude and latitude of the stations at
which the data are observed.

ä Take as conditional event the values observed during year
2000.

ä Simulate a Markov chain of length 15000 from πx(z, ·) to
estimate the distribution of the partition size.

ä And perform a bunch of conditional simulations from our
fitted model to get a nice map!
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Table 4: Empirical distribution of the partition size for the rainfall data estimated from a
simulated Markov chain of length 15000.

Partition size 1 2 3 4 5 6 7–24
Empirical probabilities (%) 66·2 28·0 4·8 0·5 0·2 0·2 <0·05

ä Around 65% of the time, the maxima at the 24 locations are a
consequence of a single extremal function, i.e., only one
storm, and around 30% of the time of two extremal functions.

ä Focusing only on partitions of size 2, around 65% of the time
at least one of the four up-north locations are impacted by a
first extremal function while the remaining 20 stations are
always influenced by a second extremal function.
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Figure 12: From left to right, maps on a 50×50 grid of the pointwise 0·025, 0·5 and 0·975
sample quantiles for rainfall (mm) obtained from 10000 conditional simulations of Brown–
Resnick processes having semi variogram γ(h) = (h/38)0·69. The rightmost panel plots the
ratio of the width of the pointwise confidence intervals with and without taking estimation
uncertainties into account. The squares show the conditional locations.
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ä We re-analyze the data of Davison and Gholamrezaee (2012),
i.e., annual maxima temperature in Switzerland.
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Figure 13: Left: Topographical map of Switzerland showing the sites and altitudes in me-
tres above sea level of 16 weather stations for which annual maxima temperature data are
available. Middle: Times series of the daily maxima temperatures at the 16 weather sta-
tions for year 2003. The ’o’, ’+’ and ’x’ symbols indicate the annual maxima that occurred
the 11th, 12th and 13th of August respectively. Right: Comparison between the fitted ex-
tremal coefficient function from a Schlather process (solid red line) and the pairwise ex-
tremal coefficient estimates (gray circles). The black circles denote binned estimates with
16 bins.
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ä We fit a Schlather process by maximizing the pairwise
likelihood with the following trend surfaces

η(x) =β0,η+β1,ηalt(x),

σ(x) =β0,σ,

ξ(x) =β0,ξ+β1,ξalt(x),

where η(x),σ(x),ξ(x) are the location, scale and shape
parameters of the generalized extreme value distribution and
alt(x) the altitude of the stations at which the data are
observed.
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ä We fit a Schlather process by maximizing the pairwise
likelihood with the following trend surfaces

η(x) =β0,η+β1,ηalt(x),

σ(x) =β0,σ,

ξ(x) =β0,ξ+β1,ξalt(x),

where η(x),σ(x),ξ(x) are the location, scale and shape
parameters of the generalized extreme value distribution and
alt(x) the altitude of the stations at which the data are
observed.

ä Take as conditional event the values observed during the 2003
European heatwave.

ä Simulate a Markov chain of length 10000 from πx(z, ·) to
estimate the distribution of the partition size.

ä And perform a bunch of conditional simulations from our
fitted model to get a nice map!
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Table 5: Empirical distribution of the partition size for the temperature data estimated
from a simulated Markov chain of length 10000.

Partition size 1 2 3 4 5–16
Empirical probabilities (%) 2·47 21·55 64·63 10·74 0·61

ä Around 90% of the time, the conditional simulations are a
consequence of at most 3 extremal functions;

ä Inspecting the data, we found that the annual maxima in 2003
occured between the 11th and 13rd of August
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Figure 14: Left: Topographical map of Switzerland showing the sites and altitudes in me-
tres above sea level of 16 weather stations for which annual maxima temperature data are
available. Right: Map of temperature anomalies (◦C), i.e., the difference between the point-
wise medians obtained from 10000 conditional simulations and unconditional medians
estimated from the fitted Schlather process.

ä As expected the largest deviations occur in the plateau region
of Switzerland

ä The differences range between 2·5◦C and 4·75◦C
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ä Inference for max-stable processes based on the (full)
likelihood

ä Conditional distributions: grid cell conditioning
ä Statistical modeling with Pareto processes
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ä Inference for max-stable processes based on the (full)
likelihood

ä Conditional distributions: grid cell conditioning
ä Statistical modeling with Pareto processes

THANK YOU !

Dombry, C. Éyi-Minko, F. and Ribatet, M. Conditional simulation of max-stable processes.

Biometrika (in press). (doi: 10.1093/biomet/ass067)
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