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SUMMARY

Since many environmental processes are spatial in extent, a single extreme event may affect
several locations, and the spatial dependence must be taken into account in an appropriate way.
This paper proposes a framework for conditional simulation of max-stable processes and gives
closed forms for the regular conditional distributions of Brown—Resnick and Schlather processes.
We test the method on simulated data and present applications to extreme rainfall around Zurich
and extreme temperatures in Switzerland. The proposed framework provides accurate conditional
simulations and can handle problems of realistic size.

Some key words: Conditional simulation; Markov chain Monte Carlo; Max-stable process; Precipitation; Regular
conditional distribution; Temperature.

1. INTRODUCTION

Max-stable processes arise naturally when studying extremes of stochastic processes and
therefore play a major role in the statistical modelling of spatial extremes (Buishand et al., 2008;
Padoan et al., 2010; Davison et al., 2012). Although a different spectral characterization of max-
stable processes exists (de Haan, 1984), for our purposes the most useful representation is

Z(x) =max(i¥i(x), xR’ (1)

(Schlather, 2002), where {¢;};>1 are the points of a Poisson process on (0, co) with intensity
dA(¢) =¢~2d¢ and the Y; are independent replicates of a nonnegative stochastic process Y
such that E{Y (x)} = 1 for all x € R?. It is well known that Z is a max-stable process on R? with
unit Fréchet margins (Schlather, 2002; de Haan & Fereira, 2006, p. 307). Although (1) takes the
pointwise maximum over an infinite number of points ¢; and processes Y;, it is possible to get
approximate realizations from Z (Schlather, 2002; Oesting et al., 2012).

Based on (1), several parametric max-stable models have been proposed (Brown & Resnick,
1977; Schlather, 2002; Kabluchko et al., 2009; Davison et al., 2012) that share the same
finite-dimensional distribution functions

Y(Xj)
p{Z(x1) <z1,...,. Z(xp) <zp}=exp |—E{ max ——= |,
j=1,....k Zj

where ke N, z,...,zz >0and xq, ..., x; € R4,
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Except in the case of the Smith model (Genton et al., 2011), only the bivariate cumula-
tive distribution functions are explicitly known. To bypass this impediment to inference based
on max-stable processes, de Haan & Pereira (2006) proposed a semiparametric estimator and
Padoan et al. (2010) suggested the use of the maximum pairwise likelihood estimator.

Similar to the variogram in classical geostatistics, the extremal coefficient function

0(x1 —x2) =—zlogpr{Z(x1) <z, Z(x2) <z}

(Schlather & Tawn, 2003; Cooley et al., 2006) is widely used to summarize the spatial depen-
dence of extremes for stationary processes. It takes values in the interval [1, 2]; the lower bound
indicates complete dependence and the upper bound complete independence.

The past decade has seen many advances in the geostatistics of extremes, and software pack-
ages have been developed in R (R Development Core Team, 2012) and made available to prac-
titioners (Wang, 2010; Ribatet, 2011; Schlather, 2012). However, an important tool still missing
is a method for conditional simulation of max-stable processes. In classical geostatistics based
on Gaussian models, conditional simulation is well established (Chiles & Delfiner, 1999) and
provides a framework for assessing the distribution of a Gaussian random field given values
observed at fixed locations; for example, conditional simulations of Gaussian processes have
been used to model land topography (Mandelbrot, 1982).

Conditional simulation of max-stable processes is a long-standing problem (Davis & Resnick,
1989, 1993). Wang & Stoev (2011) provided a first solution, but their framework is limited to
processes having a discrete spectral measure and thus may be too restrictive to appropriately
model spatial dependence in complex situations.

Based on recent developments in understanding the regular conditional distribution of max-
infinitely divisible processes, the aim of this paper is to provide a method for conditional sim-
ulation of max-stable processes with continuous spectral measures. More formally, for a study
region X C R¥, our goal is to derive an algorithm to sample from the regular conditional distri-
butionof Z | {Z(x1) =z1, ..., Z(xx) = zi} forsome zy, ..., zx > 0 and k conditioning locations
X1,..., X €X.

2. CONDITIONAL SIMULATION OF MAX-STABLE PROCESSES
2-1. General framework

This section reviews some key results from an unpublished paper by the first author, with a
particular emphasis on max-stable processes. Our aim is to give a more practical interpretation
of the results from a simulation perspective. With this in mind, we recall two key results and
propose a procedure for generating conditional realizations of max-stable processes.

Let RY be the space of real-valued functions on X C R?, and let ® = {¢i}i>1 be a Poisson
point process on RY where ¢; (x) =¢;Y;(x) (i=1,2,...) with ¢; and ¥; as in (1). We write
fx)={f(x1),..., f(xp)} for all random functions f: X - R and x = (x(,...,x;) € Xk 1t
is not difficult to show that for all Borel sets 4 C R, the Poisson process {¢; (x)};>1 defined on
R* has intensity measure

Av(d) = /O PricY(x) € A} 2 dz.

The point process & is said to be regular if the intensity measure A, has an intensity function
Ay, thatis, Ay (dz) = Ay (2) dz for all x € X%,
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The first key result asserts that, provided the Poisson process & is regular, the intensity func-
tion A, and the conditional intensity function

As ,
Ao = 200D gy g ok e R, 2 e (0, +oo)k
Ax(2)
drive how the conditioning terms {Z(x;)=z;} (j=1,...,k) are met; see Steps 1 and 2 in

Theorem 1.
The second key result states that, conditionally on Z(x) =z, the Poisson process ® can be
decomposed into two independent point processes, say ® = ®~ U &, where

O ={ped:pk) <z, i=1....k o'=|Jlped: o) =z}
i=1

Before introducing a procedure for obtaining conditional realizations of max-stable pro-
cesses, we define some notation and point out some connections with the pioneering work of
Wang & Stoev (2011).

A function ¢ € ®* such that ¢ (x;) = z; forsome i € {1, ..., k} is called an extremal function
associated to x; and is denoted by ‘Px+,- . It is easy to show that there exists almost surely a unique
extremal function associated to x;. Although ®* = {go;"l e ‘ka} almost surely, it could happen
that a single extremal function contributes to the random vector Z(x) at several locations x;, e.g.,
¢ = ¢} . To take such repetitions into account, we define a random partition 6 = (61, .. ., 6)
of the set {xi, .. xk} into £ = |@] blocks, and define extremal functions ((,ol vees O ) such that
CI>+—{<,01 s @) andgo;L(x,)—z, if x; €6; whlle<p (x))<ziifx; ¢0; (i=1,....k j=

., £). Wang & Stoev (2011) call the partltlon 0 the hitting scenario. The set of all poss1ble
partltlons of {x1, ..., x¢}, denoted by &, identifies all possible hitting scenarios.

From a simulation perspective, the fact that ®~ and ®™ are independent given Z(x) =z is
especially convenient and suggests a three-step procedure for sampling from the conditional dis-
tribution of Z given Z(x) =z.

THEOREM 1. Suppose that the point process ® is regular and let (x,s) € X¥t" . For v =

(T, ..., 1) € Prand j=1,... L definel; ={i: x; €1}, xt; = (Xi)iel;, 27, = (Zi)ie[j,xrlcj =
(xi)ig I and Zee = (zi)ig I Consider the following three-step procedure. '

Step 1. Draw a random partition 6 € &7, with distribution

7]

TTx (Z, T)= Pf{9 =1 Z(x) = Z} X, (Zr,) )"xrqlxr.,zf. (u]) duj7
wj<zpey G 07T
J
where the normalization constant is
17|
C(X,Z) = Z H)\'ij (29/') )\xqu|ij,ij (u]) du]

tey j=1 luj<zze}
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Step 2. Given t = (11, ..., T¢), draw £ independent random vectors (pfr ), ..., <p€+ (s) from
the distribution

1
pr{@f(s) edv|Z(x)=z,0=1})= ol {/ 1{“<sz¢})‘(ssxr;:)|xr,- 2y (Vs 1) du} dv,
. A

where 1, is the indicator function and
Cj = / 1{u<th})¥(s,xrq)|x11.,ZTI. (v, u) du dv,
J J k k

and define the random vector Z*(s) = max;—i,..¢ goj.“ (s).

Step 3. Independently draw a Poisson point process {¢;};>1 on (0, 00) with intensity
¢7%d¢ and {Yi}i>1 independent copies of Y, and define the random vector Z~(s) =
max;>1 & Yi(s) gy () <z)-

Then the random vector Z (s) =max{ZT(s), Z~(s)} follows the conditional distribution of
Z(s) given Z(x) =z.

The corresponding conditional cumulative distribution function is
7|

— = . pr{Z(s)<a, Z(x) <z}
priZ(s)<alZ(x)=z}= r;}Cm@,r)j];[lﬂ,,(m zo<a @

where

f{u<ztjc_,v<a} )\(S’xr;’”xtj ET (U, u) du dv

F, =pr T < VA =z, 0= =
T,] (a)=p {90] ()salzlx)=z 2 f{u<z c} )‘xrc |er g () du
i j

The first term on the right-hand side of (2) comes from Steps 1 and 2, while the ratio is a con-
sequence of Step 3. It is clear from (2) that the conditional random field Z | {Z(x) =z} is not
max-stable.

2-2. Distribution of the extremal functions

In this section we derive closed forms for the intensity function A,(z) and the conditional
intensity function Ay -(u) for two widely used max-stable processes: the Brown—Resnick
(Brown & Resnick, 1977; Kabluchko et al., 2009) and the Schlather (2002) processes. Details
of the derivations are given in the Appendix.

The Brown—Resnick process corresponds to the case Y (x) =exp{W(x) — y(x)} (x € R?)
in (1), where W is a centred Gaussian process with stationary increments and semivariogram
y, such that W (o) = 0 almost surely, where o denotes the origin of R?. For x € X*, provided the
covariance matrix X, of the random vector W (x) is positive definite, the intensity function is

k
1
A (z) = Cy exp <—210ngQx logz + Ly 10gz> Hzi_l, z € (0, oo)k,

i=1
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with 1 = (1)i=1,.. &, Yx = {y X }i=1,.. k>

R el TS ) ok sty — 1 o
Qx:Ex_ _)C—_lx’ Lx= x—_llk—yx Zx_ ,
1Z5 1 LiZx 1

LIy =2 1
1-k)/2 —1/2 —1 —1/2 k X -1
Cx=(271)( )/ |2y | /(liEx 10 / exp{2 lzxzx_llk _nyT DIV

For all (s, x) € X% and (u, z) € (0, c0)"H*, provided the covariance matrix Xy y) is positive
definite, the conditional intensity function corresponds to a multivariate lognormal probability
density function

. _ 1 . L
Atz () = ) "2 S, |72 exp {—2(logu — fspr.2)" gy (logu — us|x,z>} I«

i=1

where ), - € R™ and Xy, are, respectively, the mean and covariance matrix of the underlying
normal distribution, given by

Ms|x,z = {L(s,x)-]m,k - logZijZ,kQ(S,x)Jm,k} Eslxa Zs_l): = Jy—,g,kQ(s,x)Jm,k

I = 0
Jm’k: <0km ) , Jm’k: ( i’lk,k) ,
m

where I denotes the & x k identity matrix and 0,, x the m x k null matrix.

The Schlather process considers the case of Y(x) = Qn)l/2 max{0, e(x)} (x € R?) in (1),
where ¢ is a standard Gaussian process with correlation function p. The associated point pro-
cess @ is not regular, and it is more convenient to consider the equivalent representation where
Y(x) = Q2n)2e(x) (x e RY). For x € X*, provided the covariance matrix X, of the random
vector £(x) is positive definite, the intensity function is

with

k+1
A (z) =~ FD2 g 7120, ()~ *ED/2 <J2r> . zeRk

where ay (z) =z Zx_lz.

For (s, x) € X" %% and (u, z) e R™**, provided the covariance matrix Y (s,x) 18 positive def-
inite, the conditional intensity function Ay, .(u) corresponds to the density of a multivariate
Student distribution with & + 1 degrees of freedom, location parameter p = ., X~ Iz and scale

matrix
-l ax(Z) —1 )y )y :
x= k+1 (ES — X Xy E“) o X = <Exszs Sxx) ’

3. MARKOV CHAIN MONTE CARLO SAMPLER

Section 2 introduced a procedure for obtaining realizations from the regular conditional dis-
tribution of max-stable processes. This sampling scheme amounts to sampling from a discrete
distribution whose state space corresponds to all possible partitions of the set of conditioning
points; see Step 1 in Theorem 1. Hence, even for a moderate number & of conditioning locations,
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the state space &7 will be very large and the distribution 7, (z, -) cannot be computed exactly.
A Gibbs sampler is especially convenient for Monte Carlo sampling from 7y (z, -).

For T € &, let T_; be the restriction of 7 to the set {x1, ..., x4} \ {x;}. Our goal is to simulate
from the conditional distribution

pr@e-|0_;=1_;), 3)

where 6 € & is a random partition which follows the target distribution 7y (z, ).

Since the number of possible updates is always less than k, a combinatorial explosion is
avoided. Indeed, for t € &7 of size £, the number of partitions t* € &% such that t* S=T—
forsome j € {1,...,k}is

+_ £, {x;} is a partitioning set of 7,
£+ 1, {x;}isnota partitioning set of 7,

since the point x; may be re-allocated to any partitioning set of 7_; or to a new one.

As an example, consider the set {x1, x2, x3} and let © = ({x1, x2}, {x3}). Then the possible
partitions 7* such that 7*, = 7_5 are ({x1, x2}, {x3}), ({x1}, {x2}, {x3}) and ({x1}, {x2, x3}), while
there exist only two partitions such that t*; = 7_3, namely ({x1, x2}, {x3}) and ({x1, x2, x3}).

The distribution (3) has nice properties. For all 7* € &% such that t* ; =T, we have

|
. (z, T* - w * g
Yieo, (@ D e =) IT;2 we;
where
We,j = Ax’j (er) {u<z_c} Axr;’ ‘xtf s (u) da.
Y

Since many factors cancel out on the right-hand side of (4), the Gibbs sampler is convenient.
The most computationally demanding part of (4) is the evaluation of the integral

/ )"ch_ |xz:.2¢; (u) du.
{u<z,c} i

J

For the Brown—Resnick and Schlather processes, we follow Genz (1992) and compute these
probabilities using a separation-of-variables method which transforms the original integration
problem to the unit hypercube. A quasi-Monte Carlo scheme and antithetic variables are used to
improve efficiency.

Since it may not be obvious how to implement a Gibbs sampler whose target distribution
has support &, the remainder of this section gives practical details. For any fixed locations
X1, ..., x; € X, we first describe how each partition of {x1, ..., xx} is stored. To illustrate this,
consider the set {x1, x3, x3} and the partition ({x1, x2}, {x3}). This partition is defined as (1, 1, 2),
indicating that x| and x, belong to the partitioning set labelled 1 and x3 belongs to the partitioning
set labelled 2. There are several equivalent ways of denoting this partition; for instance, one could
write (2,2, 1) or (1, 1, 3). Since there is a one-to-one mapping between &, and the set

9};:{(al,...,ak):ie{2,...,k}, 1=a; <a; < max aj—l—l,al-eZ},
1<j<i
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we shall restrict our attention to the partitions that live in &7}; going back to our example, we see
that (1, 1, 2) is valid but (2, 2, 1) and (1, 1, 3) are not.

For r € &7} of size {, letr| = Zf-‘zl lir;=a;) and rp = Zf-‘zl 1{z,=p}; in other words, r1 and 7
are the numbers of conditioning locations that belong to the partitioning sets a; and b, where

be{l,...,bT} with
bt — £, ry =1,
e+1, ri#£l

Then the conditional probability distribution (4) satisfies

1, b=aj, (5a)
) ) wr*,b/(wr,bwr,aj), 7121,724:07[7:':51] s (Sb)
pr(tj=b|t=a;, iFj)x
Wex pWr*a;/(WepWra;)s  r1F1,r2F0,bFa;, (50)
w‘[*,bwf*,aj/w‘[,aja V]:':l,VZ:O,bZ':Clj, (Sd)
where t* = (a1, ...,a;_1,b,a;41, ..., ar). Although T* may not belong to &7/, it corresponds

to a unique partition of &7 and we can use the bijection &%, — 27/ to recode T* into an element
of Z}. The event {rj =1,r,=0,b3a;} is missing from (5a)—(5d), because {r; =1,r, =0}
implies * = t, where the equality has to be understood in terms of elements of #, and this
case is already covered by (5a).

Once these conditional weights have been computed, the Gibbs sampler proceeds by updating
each element of t successively. We use a random scan implementation (Liu et al., 1995). One
iteration selects an element of t at random, say p = (p1, ..., pk), according to a given distri-
bution, and then updates this element. Throughout this paper we will use the uniform random
scan Gibbs sampler for which the selection distribution is a discrete uniform distribution, i.e.,
p=&" .. kY.

4. SIMULATION STUDY

This section shows how we checked whether our algorithm is able to produce realistic condi-
tional simulations of Brown—Resnick and Schlather processes. For each model, we consider three
different sample path properties, as summarized in Table 1. These configurations were chosen
so that the spatial dependence structures are similar to those of the applications given in § 5.

In order to check whether our sampling procedure is accurate, given a single conditional event
{Z(x) =z} for each configuration, we generated 1000 conditional realizations with standard
Gumbel margins. Figure 1 shows the pointwise sample quantiles obtained from the 1000 sim-
ulated paths and compares them to unit Gumbel quantiles. As expected, the conditional sam-
ple paths inherit the regularity driven by the shape parameter «, and there is less variability
in regions close to conditioning locations. Since the Brown—Resnick processes considered are
ergodic (Kabluchko & Schlather, 2010), for regions far away from any conditioning location the
sample quantiles converge to those of a standard Gumbel distribution, indicating that the con-
ditional event has no influence. This is not the case for the nonergodic Schlather process. Most
of the time, the sample paths used to get the conditional events belong to the 95% pointwise
confidence intervals, which confirms that our sampling procedure seems to be accurate.

Table 2 gives timings for conditional simulations of max-stable processes on a 50 x 50 grid
with a varying number of conditioning locations. Due to the combinatorial complexity of the
partition set &7, computation times increase rapidly with respect to &, the number of conditioning
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Table 1. Sample path properties of the max-stable models. For the Brown—Resnick

model the variogram parameters are set to ensure that the extremal coefficient

function satisfies 0 (115) = 1-7, while for the Schlather model the correlation func-
tion parameters are set to ensure that 6(100) = 1-5

Brown—Resnick: y (h) = (h/1)* Schlather: p(h) = exp{—(h/1)*}
y1: Very wiggly  y2: Wiggly  y3: Smooth  p;: Very wiggly — p2: Wiggly  p3: Smooth
A 25 54 69 208 144 128
K 0-5 1-0 15 0-5 1-0 15

Z(x)

100 =50 0 50 100 -100 =50 0 50 100

Fig. 1. Pointwise sample quantiles estimated from 1000 conditional simulations of max-stable processes
with standard Gumbel margins, where the number of conditioning locations is k = 5, 10 or 15. The top row
shows results for the Brown—Resnick models with semivariograms y3, y» and y; from left to right. The
bottom row shows results for the Schlather models with correlation functions p3, p2 and p; from left to
right. In each panel, the solid black lines represent the pointwise 0-025, 0-5 and 0-975 sample quantiles,
and the dashed grey lines represent the corresponding quantiles of a standard Gumbel distribution. The
squares show the conditioning points {(x;, z;)};=1,... k. The solid grey lines show the simulated paths used
to obtain the conditioning events.

Table 2. Timings for conditional simulations of max-stable processes on a 50 x 50 grid

defined on the square [0, 100 x 21212 for a varying number k of conditioning locations

uniformly distributed over the region. The times, in seconds, are mean values over 100
conditional simulations, standard deviations are reported in parentheses

Brown—Resnick: y (h) = (h/25)0'5 Schlather: p(h) = exp{—(h/208)0'50}
Step 1 Step 2 Step 3 Overall Step 1 Step 2 Step 3 Overall
k=5 0-21 (0-01) 49 (11) 1-4(0-1) 50 (11) 1-4(0-02) 19(0-7) 09(0-3) 4.2(0-8)
k=10 8(2) 76 (18) 1-4(0-1) 85 (19) 12 (4) 2:4(0-8) 1-0(0-3) 15 (4)

k=25  95(38) 117(30)  1-4(0-1) 214(61)  86(42) 4(1)  1:0(0:3) 90 (43)
k=50 583(313) 348(391) 1.5(0-1) 931(535) 367(222) 62(113) 1.0(0:3) 430 (262)

Conditional simulations with £ = 5 do not use a Gibbs sampler.
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Fig. 2. (a) Map of Switzerland showing the stations of the 24 rainfall gauges used for the analysis, with an insert

giving the altitude; the station marked with a triangle corresponds to Zurich. (b) Summer maximum rainfall in

Zurich for 1962-2008. (c) Comparison of the pairwise extremal coefficient estimates for the 51 original weather

stations and the extremal coefficient function derived from a fitted Brown—Resnick process having semivariogram

y (h) = (h/A); the grey points are pairwise estimates, the black points are binned estimates, and the curve is the
fitted extremal coefficient function.

points. It is, however, reassuring that the algorithm is tractable when & < 50, as this covers many
practical situations.

5. APPLICATIONS
5-1. Extreme precipitation around Zurich

The data considered here were previously analysed by Davison et al. (2012), who showed that
Brown—Resnick processes are among the best models for these data. The data consist of maxi-
mum summer rainfall measurements for the years 1962-2008 at 51 weather stations in the plateau
region of Switzerland, provided by the national meteorological service, MeteoSuisse. To ensure
strong dependence between the conditioning locations, we took the 24 weather stations located
at most 30 km from Zurich as conditioning locations, and set as the conditional values the rain-
fall amounts recorded in 2000, the year of the largest precipitation event recorded in the region
between 1962 and 2008; see Fig. 2. The greatest distance between conditioning locations was
around 55 km, and the shortest was just over 4 km.

A Brown—Resnick process having semivariogram y (h) = (h/1)“ was fitted using the maxi-
mum pairwise likelihood estimator introduced by Padoan et al. (2010) to simultaneously estimate
the marginal parameters and the spatial dependence parameters A and x. As in Davison et al.
(2012), the marginal parameters are n(x), o (x) and &(x), respectively the location, scale and
shape parameters of the generalized extreme value distribution, described by n(x) = Bo,, +
B1,ylon(x) + B plat(x), o (x) = Bo,o + P1,slon(x) + B2 slat(x) and &(x) = By ¢ where lon(x)
and lat(x) denote the longitude and latitude of the stations at which the data are observed. The
maximum pairwise likelihood estimates and their standard errors for A and « are, respectively,
38 (14) and 0-69 (0-07); these give a practical extremal range, i.e., the distance 4 such that
0(hy)=1-7, of around 115 km; see Fig. 2(c).

Table 3 shows the distribution of the partition size estimated from a Markov chain of length
15 000. Around 65% of the time, the summer maxima observed at the 24 conditioning locations
belonged to a single extremal function, i.e., only one storm event, and around 30% of the time
the maxima were associated with two different storms. Since the simulated Markov chain keeps
a trace of all the simulated partitions, we looked at the partitions of size two and saw that around
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Table 3. Distribution of the partition size for the rainfall and temperature data estimated
from simulated Markov chains of lengths 15 000 and 10 000, respectively
Rainfall Temperature

Partition size 1 2 3 4 5 6 724 1 2 3 4 5-16
Frequency (%) 662 280 48 05 02 02 <005 247 21.55 6463 1074 0-61

(d

—1-10
100 L 1.08
L 1.06

80
L 1.04
60 L 102
40 |- 1:00

Fig. 3. (a)—(c) Maps on a 50 x 50 grid of the pointwise 0-025, 0-5 and 0-975 sample quantiles for rainfall

(mm) obtained from 10000 conditional simulations of Brown—Resnick processes having semivariogram y (h) =

(h/38)%%9_ (d) Plot of the ratios of the widths of the pointwise confidence intervals with and without taking esti-
mation uncertainties into account. The squares show the conditioning locations.

65% of the time, at least one of the four northern conditioning locations was impacted by one
extremal function, while the remaining 20 locations were always influenced by another one.

In Fig. 3, panels (a)—(c) show the pointwise 0-025, 0-5 and 0-975 sample quantiles obtained
from 10000 conditional simulations of our fitted Brown—Resnick process. The conditional
median provides a point estimate for the rainfall at an ungauged location, and the 0-025 and
0-975 conditional quantiles give a 95% pointwise confidence interval. As indicated by Fig. 1,
the shape parameter « has a major impact on the regularity of paths and on the width of the
confidence interval. The value k¥ ~ 0-69 corresponds to very wiggly sample paths and wider
confidence intervals. To assess the effect of parameter uncertainties on conditional simulations,
the ratios of the widths of the confidence intervals with and without parameter uncertainty are
plotted in Fig. 3(d). The uncertainties were taken into account by sampling from the asymp-
totic distribution of the maximum composite likelihood estimator and drawing one conditional
simulation for each realization. These ratios show no clear spatial pattern, and the width of the
confidence interval is increased by at most 10%.

5-2. Extreme temperatures in Switzerland

The data considered here are annual maximum temperatures recorded at 16 sites in Switzer-
land during the period 1961-2005; see Fig. 4. Following Davison & Gholamrezaee (2012), we fit
a Schlather process with an isotropic powered exponential correlation function and trend surfaces
n(x) = Poy + B1.yalt(x),o(x) = Bos and §(x) = Bo & + B¢ alt(x), where n(x), o (x) and & (x)
are the location, scale and shape parameters of the generalized extreme value distribution at loca-
tion x and alt(x) denotes the altitude above mean sea level in kilometres. The spatial dependence
parameter estimates and their standard errors are A = 260 (149) and & = 0-52 (0-12), which yield
a fitted extremal coefficient function similar to our test case p3 in § 4.

In 2003, western Europe experienced a heat wave, believed to be the most severe one recorded
since 1540 (Beniston, 2004). Switzerland was seriously affected by this event: the nationwide
record temperature of 41-5°C was recorded that year in Grono, Graubiinden, near Lugano. For
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Fig. 4. (a) Topographical map of Switzerland showing the sites and altitudes, in metres above sea level, of 16 weather

stations for which annual maximum temperature data were available. (b) Map of temperature anomalies, in degrees

Celsius, i.e., the differences between the pointwise medians obtained from 10 000 conditional simulations and the
unconditional medians estimated from the fitted Schlather process.

our analysis, we condition on the maximum temperatures observed in 2003. Based on the fitted
Schlather model, we simulate a Markov chain of effective length 10 000, with a burn-in period
of length 500 and a thinning lag of 100 iterations. The distribution of the partition size estimated
from these Markov chains is shown in Table 3. Around 90% of the time, the conditional realiza-
tions were a consequence of at most three extremal functions. Since our original observations
were not summer maxima but maximum daily values, a close inspection of the time series in
year 2003 reveals that the hottest temperatures occurred between the 11th and 13th of August,
corroborating to some extent the distribution shown in Table 3.

Figure 4(b) shows the spatial distribution of temperature anomalies, i.e., the differences
between the pointwise conditional medians obtained from 10000 conditional simulations and
the pointwise unconditional medians estimated from the fitted Schlather model. As expected,
the largest deviations occur in the plateau region of Switzerland, while appreciably smaller val-
ues are found in the Alps. The differences range from 2-5°C to 4-75°C and are consistent with
the values reported by climatologists for mean values (Beniston, 2004).
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APPENDIX

Brown—Resnick model
For all x € X* and Borel sets 4 C R,

A(A) = /0 pr[¢ exp{ W (x) — y(x)} € A1t 2 d¢ = /O /]R k1[;exp{y-y<x>}eA]ﬁc<y)dyfzd;,
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where f, denotes the density of the random vector W (x), i.e., a centred Gaussian random vector with
covariance matrix ¥, and variance 2y (x). The change of variables z = ¢ exp{y — y(x)} and r =log¢
yields

00 k
AX(A)=/ /fx{logz—r+y(x)}Hzi_ldzexp(—r)dr:/kx(z)dz,
—o0 J A i=1 A

with
k 0
A(z) = Hzi_l / Sellogz —r 4+ y (x)} exp(—r) dr.
i=1 -
Since
fillogz —r 4 y (x)} exp(—r) = 2m) 15,7 exp {—;Pm}
with

Pry=r*1. 37", — 2r[1} 2 logz + ¥y (x)} — 1]+ {logz 4+ y (x)}" = {logz + y ()},

standard computations for Gaussian integrals give

1
Ax(z) = Cy exp <—2 logz"Q,logz + L, logz) Hzi_l'

i=1

The conditional intensity function is

X

Cesx 1
Aglr,z (1) = (C ) exp {—2 log (1, 2)" O s.x) log(u, z) + L x log(u, z)

1 m
+ > logz'Q,logz — L, logz} l—qu1

i=1

and, since log(u, z) = J,, s logu + Jﬂm,k log z, it is not difficult to show that

Cisx 1 S o
)\slx,z(u) = ((j ) eXp {_2(10gu - Ms\x,z) Esp} (IOgu - //lex,z)} Hui 1-
i=1

X

Finally, the relation Cy)/Cyx = (27)™/?|Z,,|7"/* is a simple consequence of the normalization
f)\slx,z(u) du=1.

Schlather model
For all x € X* and Borel sets 4 C R,

A(A) = /0 pr{Qn)?ce(x) € A}¢ 2 de = / /R Liamyeyeay fr () dy ¢ 2 dg,
0 k
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where f, denotes the density of the random vector e(x), i.e., a centred Gaussian random vector with
covariance matrix X,. The change of variable z = (27)'/%¢y gives

_ —k/2 = z —(k+2)
Al =) /0 /Af {<2n)1/2; } ¢oed
o0 1
_ —k —12 _ T -1 —(k+2)
= Q2m) "X, /o /Aexp ( e z X, z) 'Y dzd¢

2 4 1/2
=(2n)_k|2x|_1/2/ T E(x*dz, X~Wei{(”) ,2}
A

LD Vel PAD VeV

2 4 *=D2 4
_ (271)_1‘|2x|_1/2/ il il P2 g
A2z \ZTE 0z 2

_ / he(2) dz,
A

where A, (z) = 7~ * D215 7120, (2)"**D2 T {(k + 1)/2} and a, (z) = 2" 2.
For all # € R™, the conditional intensity function is

_ — k+1)/2
e {a@,x)(u,z)} ot/
|2 |~1/2 a,(2)

(m+k+l)

2
r(5)

)Vslx,z(u) =7 day (Z)7m/2

We start by focusing on the ratio a vy (¢, z) /ax (z). Since

—1 _ _ _ _ _
z:s z:s:)c _ (Es - z:s:x Ex lz:x:s) ! _(Es - z:s:x Ex lz:x:s) 1Es:x Ex !
2:x:s Zx B _E;IEXZS(ZS - Z:s:x E;IExzs)il 2;1 + E;IE,{:S(ES - Eszx Z;lzx:s)ilzs:x 2;1

straightforward algebra shows that

ax(z)
k+1

a(s,x)(u,z) 14 (u—M)Ti—l(u—M) n=3, Z—IZ f]z
ay(2) k+1 ’ R

We now simplify the ratio | X, y)|/| 2y |. Using the fact that
) _ Es Es:)c _ Im Es:x Es - z:s:x E;l z;x:s Om,k
) = 2:x:s 2:x - Ok,m Ex z ! 2:x:s Ik
together with some more algebra, we obtain

b)) k+1)" -
| (S’X)| = |Zs - Es:x Z,:lzxzs| = { * } |E|
|2y ax(z)

(B — T 21 20).

Using the previous two results, it is easily found that

- —(m+k+1)/2
(= W' S w = } r ()

= TET

hote () =772k 1T BT {1 +

which corresponds to the density of a multivariate Student distribution with the stated parameters.
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