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Abstract: Cloud-to-ground lightning strikes observed in a specific geo-
graphical domain over time can be naturally modeled by a spatio-temporal
point process. Our focus lies in the parametric estimation of its intensity
function, incorporating both spatial factors (such as altitude) and spatio-
temporal covariates (such as field temperature, precipitation, etc.). The
events are observed in France over a span of three years. Spatio-temporal
covariates are observed with resolution 0.1˝ ˆ 0.1˝ (« 100km2) and six-
hour periods. This results in an extensive dataset, further characterized
by a significant excess of zeroes (i.e., spatio-temporal cells with no ob-
served events). We reexamine composite likelihood methods commonly em-
ployed for spatial point processes, especially in situations where covariates
are piecewise constant. Additionally, we extend these methods to account
for zero-deflated subsampling, a strategy involving dependent subsampling,
with a focus on selecting more cells in regions where events are observed.
A simulation study is conducted to illustrate these novel methodologies,
followed by their application to the dataset of lightning strikes.

MSC2020 subject classifications: 60G55; 62K99.
Keywords and phrases: Spatio-temporal point process, Composite like-
lihood, Subsampling, High-dimensional data.

1. Introduction

Severe thunderstorms can be associated with personal injury or costly infras-
tructure damage. Among the major risks to be assessed are those associated with
high lightning intensity, and they have been studied for about twenty years (see
e.g. Curran et al. (2000), Mona et al. (2016), Schulz et al. (2005, 2016), Simon
et al. (2017), Hernandez-Magallanes and Genton (2019), Nampak et al. (2021)).
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Additionally, the interest in evaluating the intensity of cloud-to-ground light-
ning strikes might increase in the context of an energy transition: wind farms
are multiplying, and the risk of lightning is one of the five hazards typically
identified by manufacturers. From a physical standpoint, a thunderstorm corre-
sponds to the dissipation of energy involving various thermodynamic processes,
such as convection. To describe these complex processes, several covariates are
known to be useful: the CAPE (Convective Available Potential Energy), which
acts as the ’fuel’ in the development of the cloud; the θ1

w at 850 hPa (Wet-
bulb potential temperature at 850 hPa), which is known to be a good synoptic
predictor, giving important information on the position of the fronts; the tem-
perature at two different altitudes (20m and 1500m), providing information on
the vertical profile of the air mass (convection); humidity; and wind (zonal and
meridional components). A few other purely spatial covariates like the altitude,
the distance to the sea should also have an influence (see Section 2 for more
details). Lightning strike impacts, although continuously studied by scientists
in the fields of physics, climatology or statistics remains a phenomenon with
an important part of randomness. The set of strikes collected over time and
space constitute a spatio-temporal point pattern and the goal of this paper is to
characterize its distribution in terms of climatological, topographical covariates.

Spatio-temporal point processes are the stochastic models generating such
data. Point processes in (a Polish) space S (Daley et al., 2003, Møller and
Waagepetersen, 2003) model points, events, objects in interaction. The data
consist in a set y “ ty1, . . . , ynu with yi P S. When S “ R`,Rd (d ě 1)
or Rd ˆ R` we speak of temporal, spatial or spatio-temporal point processes.
Most of statistical methodologies and their implementation have been devoted
to temporal or spatial point processes (Møller and Waagepetersen, 2003, Illian
et al., 2008, Baddeley et al., 2015). Spatio-temporal are more challenging and
modern due to the increase of data collection and have also received a lot of
attention (Diggle, 2006, Cressie and Wikle, 2015, González et al., 2016).

The aim of this paper is to explore first-order structure of the lightning strikes
dataset. The intensity function, say ρpyq for y P Rd ˆ R`, measures the mean
local number of events in the vicinity of a space-time point y. A point pattern
is said to be homogeneous if the intensity is constant and inhomogeneous other-
wise. Our objective is to model parametrically the function ρ using spatial and
spatio-temporal covariates, to estimate these parameters and to produce spatial
prediction maps. This work can be viewed as a climatological risk assessment
contribution. We characterize the distribution of lightning strikes using covari-
ates. We do not indent to produce a short-term forecast of lightning strikes
activity.

Before detailing further our approach and contributions, let us first highlight
a few facts about the dataset (detailed in Section 2): we observe more than one
million of impacts between 2013 and 2015, together with 6 spatial covariates
and 7 spatio-temporal covariates. The spatio-temporal resolution is v “ 0.1˝ ˆ

0.1˝ ˆ 6h. As outlined in Section 2, the point pattern is highly inhomogeneous
in time with daily and seasonal effects, and in space. In addition, the point
pattern exhibit some (natural) clustering effect not explained by inhomogeneity.
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Together these last two facts are the reasons why approximately 99% of cells of
size v do not contain any data point.

We consider an exponential family model for the intensity function ρ, see
Section 3 and in particular Equation (3.1). On the one hand, the clustering
effect prevents us from modelling the data by a spatio-temporal Poisson point
processes, the standard reference process which models events without any in-
teraction (see e.g. Daley et al. (2003)). On the other hand, maximum likelihood
estimation is also known (and in particular for spatio-temporal point processes)
to be very computationally expensive (Møller and Waagepetersen, 2003). Com-
posite likelihood methods offer excellent alternatives. They were not all de-
veloped for spatio-temporal point processes but the extension is in principle
straightforward. Among methods, we have the Poisson likelihood (Rathbun and
Cressie, 1994, Baddeley and Turner, 2000, Schoenberg, 2005, Waagepetersen
and Guan, 2009), the logistic regression likelihood when one focuses not on the
number of impacts per cell but on the presence/absence of impacts, a standard
approach known as spatial pixel-based logistic regression and commonly used
in the standard GIS community (see e.g. Baddeley et al., 2010, and the many
references therein on this topic), the conditional logistic regression likelihood
estimation (Waagepetersen, 2008, Baddeley et al., 2014), the quasi-likelihood
method (Guan et al., 2015) or the variational method (Coeurjolly and Møller,
2014). We review and compare these methods (except the last two ones which
are less appropriate in the context of this application as explained in Section 4.5)
in Section 4. More precisely, we particularize the different methods and discuss
implementation issues, in the context of discretized covariates (ie piecewise con-
stant covariates on cells of volume v). As noticed and studied by Baddeley et al.
(2010), many papers in environmental sciences, ecology and, say, research areas
using data based on Geographical Information Systems (GIS) analyse spatial
point pattern data at a pixel level (Elliot et al., 2000, Wakefield, 2004, Waller
and Gotway, 2004). Such a framework is often encountered in practice, see e.g.
Raeisi et al. (2021). Our analysis in Section 4 yields interesting facts and links
with generalized linear models. Some of these facts are known and can be found
in Baddeley and Turner (2000), Baddeley et al. (2010, 2014). In particular, we
demonstrate that the Poisson likelihood method, acknowledged for experienc-
ing slight bias in the presence of continuous covariates due to an approximation
in quasi-Poisson regression implementation, is precisely equivalent to a Poisson
regression with a specific offset term when covariates are discretized.

The resolution of the covariates, combined with the fact that the observed
phenomenon is highly inhomogeneous in time and space explain the overwhelm-
ing dominance of zero values of the indicators of presence/absence of an impact
in a spatio-temporal cell. As detailed in Section 2, whatever the season or six-
hour periods, we observed that approximately 99% of cells with volume v do
not contain any data point. When one applies any method described above to
the dataset or to any independent subsample (to reduce computational cost
inherent to this large dataset), this causes numerical problems and instabili-
ties. A practical strategy that is common in the GIS literature (Atkinson and
Massari (1998), Gorsevski et al. (2006), see also Baddeley et al. (2015, Section
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9.10.3)) when pixel-based logistic regression is considered is to take a sample of
pixels where zero values are observed. Then logistic regression is applied to the
data consisting of the ‘1’ pixels (pixels containing at least one data point) and
the sampled ‘0’ pixels. The main contribution of the present paper is to revisit
standard composite likelihood-methods for point patterns (temporal, spatial or
spatio-temporal) when such ideas are considered. It is worth specifying that we
do not aim at modelling this excess of zeroes. Instead one aims at defining sub-
samples where the ’0’ (here) voxels can be deflated compared to the ’1’ voxels.
Section 5 details the construction of such subsamples, called zero-deflated sub-
samples, and shows how these ideas can be applied to all composite likelihood
methods presented in Section 4.

The rest of the paper is organised as follows. We detail the dataset and the
problems it implies in Section 2. Section 3 provides a background on spatio-
temporal point processes and specifies the parametric model considered in this
paper. Section 4 reviews composite likelihood methods used to estimate the in-
tensity function in the particular case where covariates are discretized. Section 5
defines the concept of zero-deflated subsamples in particular when they are ap-
plied to methods defined in Section 4. We end Section 5 with a brief simulation
study showing the efficiency of the proposed methodologies when they are ap-
plied to zero-deflated subsamples even if we have a dataset with a large number
of ’0’. Section 6 proposes an application to the lightning strikes dataset. We
first present criteria to measure quality of spatio-temporal predictions, one of
them being very close to the Wasserstein distance largely used in the statistics
community to compare two empirical measures. Second, we compare methods
described in Section 5 in terms of computational cost and prediction quality.
Our finding is that the subsampled version of the Poisson likelihood turns out
to be the best one. This method is then used to illustrate temporal predic-
tion curves and spatial prediction maps. Several perspectives can be addressed
based on the present work. Some of them are described in Section 7. Finally,
Appendix A gathers additional figures regarding the exploratory data analysis
and simulation study.

2. Presentation of data and their complexity

In this section, our objective is to shed the light on the challenges the data
of interest impose in terms of statistical methodology. Data are provided by
Météorage and Météo-France. We observe impacts of cloud-to-ground lightning
flashes over France from 2010 to 2015. Longitudes and latitudes are collected
to a 100m accuracy and time events upto the nanosecond. Overall, we observe
1846533 events. Figure 1 is a brief illustration of this spatio-temporal dataset,
from which we can readily see that this phenomenon turns out to be highly
inhomogenous in time and space.

Even if a more rigorous background on point processes and intensity functions
is provided in Section 3, Figures 6 and 7 are quite easy to interpret. Figure 6
focuses on the temporal nature of the dataset (by aggregating data over space).
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Fig 1. (Top) Map of France with altitudes and locations of impacts during the second half
of September 2015. The dashed black box (resp. blue, red, orange) corresponds to the domain
where impacts are observed (resp. to the subdomain called ‘Alps’, ‘Channel’ and ‘Pyrénées’
in Appendix A.1). The black triangle corresponds to the location denoted by x0 in Figure 8.
(Bottom) Spatio-temporal representation of lightning strikes impacts for different months in
2010. Only 20% of (randomly chosen) impacts are represented for August 2010.
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A yearly seasonal effect is clearly seen with a much higher intensity during sum-
mer (June to August) than in spring (April to May) and autumn (September to
November). The winter period (December to March) seems to be the most quiet
period. As shown in Figure 6 (bottom), the temporal intensity is quite variable
for different regions (Alps, Channel, Pyrénées for instance). Finally, it is worth
pointing out that within a day the temporal intensity varies a lot. We notice a
slow activity during the night and a higher activity in the afternoon/evening,
a pattern which occurs quite similarly for the different considered regions and
seasons. Figure 7 is more focused on the spatial nature of the dataset. We ag-
gregate data by month and estimate non parametrically the spatial intensity
(using a standard kernel intensity estimation method, e.g. Diggle (1985), Møller
and Waagepetersen (2003)). We retrieve the previous comment that the activ-
ity is higher during warmer months. This figure illustrates more strenuously the
spatial differences on the French territory.

Besides the obvious inhomogeneous nature of this dataset, Figure 2 explores
the dependence between lightning strikes. This constitutes only a part of a
larger exploratory analysis. Here, we have aggregated data by month and have
estimated standard spatial summary statistics such as the inhomogeneous K
and J functions (see Møller and Waagepetersen (2003), Illian et al. (2008),
Van Lieshout (2011)). To estimate these functional summary statistics, we use
kernel intensity estimates as plug-in estimates. We do not provide global en-
velopes tests (Myllymäki et al. (2017)) to not overload the graphs. The general
conclusion is however crystal-clear: the point pattern cannot be simply modelled
by a spatio-temporal inhomogeneous Poisson point process (otherwise monthly
aggregated spatial point processes would be spatial Poisson point processes as
well, which is not the conclusion from Figure 2). It is not the objective of
the present paper to model second-order characteristics of the lightning strikes
dataset. However, the previous comment means that if we estimate paramet-
rically the intensity of the point pattern, we have to consider an estimation
method which is robust to the model.

In addition to this spatio-temporal point pattern, we also have at our disposal
spatial covariates and spatio-temporal covariates used to explain the distribution
of lightning strikes. Spatial covariates are observed on a regular grid of 0.1˝ˆ0.1˝

(« 100km2). They are constituted by the altitude map, the distance to the
sea, as well as four additional variables computed from the AURELHY method
(Bénichou, 1994). Their interest has been shown recently, see e.g. Taillardat
and Mestre (2020), for statistical post-processing of ensemble forecasts. Spatio-
temporal covariates consist of model outputs (Météo-France ARPEGE1 Model
output) of climate covariates that are available only from 2013 to 2015. We
have access to the following covariates observed on a regular grid of 0.1˝ ˆ

0.1˝ˆ6h: CAPE (Convective Available Potential Energy); Humidity (at altitude
1500m); Temperatures (at altitudes 20m and 1500m); θ1

w at 850 hPa (Wet-bulb
potential temperature at 850 hPa); zonal and meridional components of wind.
The relevance of these latter covariates has been detailed in the Introduction.

1See e.g. https://www.umr-cnrm.fr/spip.php?article121&lang=en

https://www.umr-cnrm.fr/spip.php?article121&lang=en
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The altitude map is illustrated in Figure 1. Similarly to the point pattern,
these covariates obviously vary a lot, as shown in Figure 8. Figure 9 explores
the interest of some of these covariates to explain the presence/absence of a
lightning strike at a specific location.

Inhomogeneous Poisson

Inhomogeneous Poisson

J function K function

0.000 0.025 0.050 0.075 0.100 0.125 0.000 0.025 0.050 0.075 0.100 0.125

0.00

0.05

0.10

0.15

0.20

0.25

0.50

0.75

1.00

r

S
um

m
ar

y 
fu

nc
tio

n

Month
July 2011

July 2012

July 2013

July 2014

July 2015

Aug. 2011

Aug. 2012

Aug. 2013

Aug. 2014

Aug. 2015

Fig 2. Non parametric estimation of the spatial inhomogeneous J and Ripley’s K functions.
Data are aggregated by months for July and August from 2011 to 2015. The dashed line
and curve correspond to the expected J and K functions under the Poisson assumption. An
estimate of the J function (resp. K function) below 1 (resp. above πr2) which corresponds
to the situation under the Poisson case indicates clustering in data, that is strong positive
spatial correlation between events (ie lightning strikes).

As noticed and studied by Baddeley et al. (2010), many papers in environ-
mental sciences, ecology and, say, research areas using data based on Geograph-
ical Information Systems (GIS) analyse spatial point pattern data at a pixel
level. Such a framework is often encountered in practice, see e.g. Raeisi et al.
(2021) and in particular in the current paper, as spatio-temporal covariates are
collected within a 0.1 degree squared and a 6-hour period. Given the observed
phenomenon (remind that data are collected up to the nanosecond), this spatio-
temporal grid appears quite coarse. The spatio-temporal observation domain
W ˆ T (where W is the spatial domain and T “ r2013, 2015s) can therefore be
viewed as a tessellation of spatio-temporal cells ∆j (j “ 1, . . . , J) over which
covariates are constant. Given the resolution of spatio-temporal covariates, we
have J « 7 ˆ 107. The following comment is crucial and constitutes the core of
the present paper: despite the apparent high number of events (approximately
106 lightning strikes impacts for data restricted to the period 2013-2015 where
all covariates and spatio-temporal covariates are observed), most of the cells ∆j

do not contain any data. This is illustrated by Figure 3: even if one splits data
by season and 6-hour periods, more than 98% of cells ∆j are empty.

To summarize this section, we observe 1050342 spatio-temporal events of
cloud-to-ground lightning strikes in France over the period 2013-2015, 6 dis-
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Fig 3. Number of impacts (per thousands) by season and 6-hour period and proportion of the
spatio-temporal voxel-grid cells containing no lightning strike impact.

cretized spatial covariates and 7 discretized spatio-temporal covariates. The
point pattern is highly inhomogeneous both in time and space and the events
also seem to exhibit some strong clustering (hence a departure to the indepen-
dence assumption). Finally, at the voxel-grid level (i.e. at the resolution level),
the dataset exhibits a huge excess of zeroes, in the sense that most of space-time
observation domain is empty. All these different observations are studied in the
next three sections before going back to the dataset in Section 6.

3. Notation and intensity modelling

A (planar) spatio-temporal point process Y defined in R2ˆR` can be viewed as
a locally finite random measure on R2 ˆR` (see e.g. Daley et al. (2003), Møller
and Waagepetersen (2003)), which means that for any bounded W Ă R2 and
T Ă R`, the number of (space-time) points is bounded. We also assume that
Y is simple, in the sense that two events do not occur at the same space-time
point. In the following, we use the terminology point for an element of Y, thus
for a space-time point, and the notation y “ px, tq where x P W and t P T for
an element of Y.

Estimating first-order summary statistics is usually the first step to analyse
a point process. The first-order intensity function ρ of Y (assumed to exist) is
a function of y “ px, tq and is defined by the following integral characterization
(also called Campbell theorem), see Møller and Waagepetersen (2003): for any
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non-negative function f ,

E
ÿ

yPY

fpyq “

ż

R2ˆR`

fpyqρpyqdy

where we abuse notation by denoting dy “ dxdt. In other words, using the
notation NpAq for the counting variable of any bounded borel set A Ă R2 ˆR`

ρpyq “ ρpx, tq “ lim
dxÑ0,dtÑ0

EtNpdx ˆ dtqu

dxdt

describes the local number of points in the vicinity of y “ px, tq. Higher-order
intensity functions can be described in a similar way (using higher-order version
of Campbell theorem). In this paper, we are interested in modelling ρ as a
parametric form of spatial and spatio-temporal covariates (which themselves
are realizations of spatial or spatio-temporal random fields) denoted here by
Zpxq P RnZ and Cpx, tq P RnC . Hence, nZ and nC stand for the number of
spatial and spatio-temporal covariates. Given Cpx, tq “ c and Zpxq “ z, we
model ρ as a function of x, t, c, z, i.e. ρpyq “ ρppx, tq, c, zq.

Given the explanatory study proposed in Section 2, we propose to ‘aggregate’
data by season and 6-hour period of the day. Following this, we let S “ tsummer,
fall, winter, springu and M “ t1, . . . , 4u denote the set of seasons (as described
in the previous section) and the set of six-hour periods (0:00-06:00, 06:00-12:00,
12:00-18:00 and 18:00-0:00) of the day. And we view Y as a union of marked
point processes where the mark is an element of SˆM (which actually depends
on time), that isY “

Ť

ps,mqPSˆM Ys,m whereYs,m can be described asYs,m “

tpx, tq P Y : x P W and t P Ts,mu where Ts,m is the union of time intervals
restricted to the season s and the six-hour periodm. Note that we do not assume
that Ys,m is independent of Ys1,m1 . However, we assume that the intensity
function ρ of Y has the form

ρpyq “
ÿ

sPS,mPM
ρs,mpyq with ρs,mpyq “ exp

´

βJ
s,m tZpxq,Cpx, tqu

¯

(3.1)

for any y “ px, tq P W ˆ Ts,m with βs,m P RnZ`nC . We do not make any
further assumption on the spatio-temporal point process. In particular, we have
to keep in mind that Ys,m is probably not a Poisson point process, as revealed
by Figure 2.

The estimation of ρ from (3.1) is tackled by estimating separately ρs,m for
any s,m. In the following two Sections 4-5, we focus on the specific problem
of a single intensity. To make it general, we slightly simplify the notation by
discarding the subscripts s,m to ease the reading and omitting (without loss
of generality) the spatial covariates Z. These sections are therefore written for
general spatio-temporal point processes Y with intensity modelled from an ex-
ponential family model with discretized spatio-temporal covariates.
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4. Composite likelihoods methods with discretized covariates

LetY be a spatio-temporal point process onWˆT . We consider the exponential

model for its intensity given by ρpyq “ ρpx, tq “ exp
´

βJCpx, tq
¯

for any y “

px, tq P W ˆT , whereCpx, tq P RnC . In particular, we assume that the covariates
are deterministic (to ease the presentation) and are constant on ∆j , that is
Cpx, tq “ Cj P RnC whenever px, tq P ∆j , where the cells ∆j , with volume

δj , form a tessellation of W ˆ T , that is W ˆ T “
ŤJ

j“1 ∆j . Note that the
statements of Sections 4-5 are obviously valid for purely temporal or spatial
point processes, or more generally for any point process in Rd.

The methods we consider fall into the terminology of composite likelihoods
methods and are quite standard in the literature, see e.g. Coeurjolly and La-
vancier (2019) for a review. However we particularize them and discuss imple-
mentation issues, in the context of discretized covariates, which yields interesting
facts. Some of these facts can be found in Baddeley and Turner (2000), Baddeley
et al. (2010, 2014). A summary and comparison of methods described below is
proposed in Table 1.

4.1. Poisson likelihood (method PL)

To estimate the vector β, it is now well-known (see e.g. Waagepetersen and
Guan (2009) or Coeurjolly and Lavancier (2019)) that the maximum of the
Poisson likelihood exhibits interesting properties such as consistency, asymptotic
normality even if the underlying point process is not a Poisson point process.
The main argument comes from Campbell theorem which in particular states
that the score of the Poisson likelihood is unbiased for general point processes.
For general intensity models, the Poisson likelihood writes

PLpβq “
ÿ

yPY

log ρpyq ´

ż

WˆT
ρpyqdy (4.1)

which, for discretized covariates and exponential family models (3.1), reduces
to

PLpβq “

J
ÿ

j“1

!

Njβ
JCj ´ δj exppβJCjq

)

“

J
ÿ

j“1

!

Nj logpδj exppβJCjqq ´ δj exppβJCjq

)

´

J
ÿ

j“1

Nj log δj . (4.2)

The first sum of (4.2) precisely corresponds to a Poisson regression likelihood
with the canonical link and with offset term plog δjqj . Therefore, when covariates
are piecewise constant, the Poisson (or composite) likelihood estimator is strictly
equivalent to a Poisson regression (with an offset term).

It is worth mentioning that when covariates are not piecewise constant, a nu-
merical problem appears since one has to discretize the integral term of (4.1).
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Baddeley and Turner (2000) use Berman-Turner’s approximation (Berman and
Turner, 1992) and show that if one uses as quadrature points the union of a
set of grid points and data points, Equation (4.1) can be implemented via a
quasi-Poisson regression model. However, using data points in the integral dis-
cretization step leads to an approximation which can be problematic especially
when the number of data points is high, as noticed by Baddeley et al. (2014).

4.2. Conditional logistic regression and its weighted version
(methods CLRL and WCLRL)

When covariates are continuous, the implementation of the Poisson likelihood
induces some bias. To overcome that numerical problem, Waagepetersen (2008),
Baddeley et al. (2014) propose an alternative estimating function which can be
implemented using a logistic procedure. Following Waagepetersen (2008), on can
consider a dummy point process given by a stratified binomial point process with
J points, one in each cell ∆j , that is the point process, say D, with J points and

with intensity ηpxq “
řJ

j“1 δ
´1
j 1px P ∆jq. We then leave the reader to check

that the conditional logistic regression likelihood (for spatial point processes) is
equal to

CLRLpβq “
ÿ

yPY

log

ˆ

ρpyq

ηpyq ` ρpyq

˙

`
ÿ

yPD

log

ˆ

ηpyq

ηpyq ` ρpyq

˙

. (4.3)

Equation (4.3) is indeed a logistic regression likelihood with a sample of N ` J
Bernoulli random variables with probability πpyq “ ρpyq{pηpyq ` ρpyqq if y P Y
and 1 ´ πpyq if y P D. Let us see how (4.3) rewrites for piecewise constant
covariates. Let Y “ ty1, . . . , yNu, D “ td1, . . . , dJu and ρj “ exppβJCjq, for
j “ 1, . . . , J . For any sequence a1, . . . , aN , we define the sequence ǎ1, . . . , ǎN`J

by

ǎk “

"

řN
l“1 al1pyk P ∆lq if k “ 1, . . . , N

ak´N if k “ N ` 1, . . . , J

Using this notation, (4.3) can be rewritten as

CLRLpβq “

N`J
ÿ

k“1

"

ǐk log

ˆ

δ̌kρ̌k

1 ` δ̌kρ̌k

˙

` p1 ´ ǐkq log

ˆ

1

1 ` δ̌kρ̌k

˙*

(4.4)

where ǐk “ 1 if k “ 1, . . . , N and 0 otherwise. Formally, the latter equation
corresponds to a logistic regression with Bernoulli random variables Ǐk with
mean PpǏk “ 1q “ δ̌kρ̌k{p1 ` δ̌kρ̌kq. Baddeley et al. (2014) show that, for general
spatial covariates and for any spatial point process, this procedure leads to an
accurate estimation which is robust to the Poisson assumption. There is no
integral discretization. It is also shown that if J is large, the conditional logistic
regression likelihood tends almost surely to the Poisson likelihood. Finally, since
covariates are constant on ∆j , it is worth noting that (4.4), which is a logistic
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regression with response vector of length N ` J , can be rewritten as

WCLRLpβq “

#J1`J
ÿ

j“1

w̃j

´

Ĩj logpp̃jq ` p1 ´ Ĩjq logp1 ´ p̃jq

¯

(4.5)

where #J1 is the number of elements of J1 “ tj : Nj ą 0u and where

pw̃j , Ĩj , p̃jq “

"

pNj1pjq, 1, pj1pjqq if j ď #J1
p1, 0, pj´#J1`1q if J1 ă j ď #J1 ` J

where we use the notation j1pjq for the jth index of t1, . . . , Ju for which Nj ą 0.
Equation (4.5) can be simply implemented as a weighted logistic regression
likelihood with canonical link. This implementation is faster since the response
vector of the regression (4.5) is now #J1 ` J which can be much smaller than
N ` J when a large number of cells ∆j do not contain any point.

4.3. Bernoulli regression likelihood with logit link (method BRLlogit)

We continue with a method often considered in the literature (see e.g. Bad-
deley et al. (2010)), known as the pixel logistic regression. Let us start with
Equation (4.4), which can be written using (4.3) as

J
ÿ

j“1

tNj log ppjq ` log p1 ´ pjqu with pj “
δjρj

1 ` δjρj
. (4.6)

The approximation suggested in the literature simply consists in replacing Nj

by Ij “ 1pNj ą 0q, i.e. the number of impacts in ∆j is replaced by the pres-
ence/absence of an impact in ∆j . This yields the criterion

BRLlogitpβq “

J
ÿ

j“1

tIj log ppjq ` p1 ´ Ijq log p1 ´ pjqu . (4.7)

In other words, (4.7) is the likelihood of the Bernoulli random variables Ij if one

(wrongly) assumes that logitPpIj “ 1q “ logpδjq ` βJCj . Replacing Nj by Ij
in (4.3) is definitely a rough approximation which is difficult to quantify without
any assumption on the underlying spatial point process Y. This approach is also
not robust to the Poisson assumption for Y.

4.4. Bernoulli regression likelihood with complementary
log-log link (method BRLcloglog)

The previous approximation can be alleviated if we link correctly µj “ PpIj “ 1q

to β. A model is required for this. If one assumes that the variables Nj are inde-
pendent and distributed as Poisson random variables, then standard calculation
shows that gpµjq “ βJCj `log δj where g is the log-log complementary function
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given by gptq “ logp´ logp1´ tqq for t P p0, 1q. Then, the log-likelihood based on
I1, . . . , IJ is equal to

BRLcloglogpβq “

J
ÿ

j“1

tIj logpµjq ` p1 ´ Ijq logp1 ´ µjqu

“

J
ÿ

j“1

"

Ij log

ˆ

µj

1 ´ µj

˙

` logp1 ´ µjq

*

. (4.8)

Therefore, if Y is a (spatio-temporal) Poisson point process, β can be indeed
(consistently) estimated using a logistic regression with log-log complementary
link and offset term plog δjqj . However, (4.8) is not a composite likelihood and so
is not robust at all to the Poisson assumption. Indeed, the score of BRLcloglogpβq

is equal to

BRL
p1q

cloglogpβq “

J
ÿ

j“1

Cj logp1 ´ µjq

ˆ

Ij
µj

´ 1

˙

whereby we deduce, by denoting µ̃j “ PpNj ą 0q, that

E
´

BRL
p1q

cloglogpβq

¯

“

J
ÿ

j“1

Cj logp1 ´ µjq

ˆ

µ̃j

µj
´ 1

˙

.

For general point processes the assumption that µ̃j “ µj ,@j does not hold.

Hence, BRL
p1q

cloglogpβq is not, in general, an unbiased estimating function for non-
Poisson point processes and thus this procedure should not be recommended if
one suspects a significant departure of data from the Poisson assumption.

4.5. Other approaches

As we do not want to model second-order characteristics of the point process Y,
the maximum likelihood method is not considered. As far as we know, two other
approaches could have been investigated. The first one is the quasi-likelihood
method proposed by Guan et al. (2015). This method designed for spatial point
processes (but which can easily be extended to spatio-temporal point processes)
has the merit to be robust to the Poisson assumption and to reduce the variance
of the Poisson likelihood estimator. Its computation cost is however important
in particular for large datasets. This approach also requires a preliminary esti-
mation of the pair correlation function. Modelling the second-order structure of
the spatio-temporal point process Y is not the topic of this paper.

The second one, based on a variational type estimating equation, is proposed
by Coeurjolly and Møller (2014). The main interest of this method is that it does
not require any optimization procedure and is very cheap from a computational
point of view. However, it requires that covariates are observed at a very fine
scale in particular in a neighborhood of the observed points. Such an assumption
does not hold for the application considered in this paper.
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5. Zero-deflated subsampled versions of composite likelihoods
methods

5.1. Introduction

Given the size of regressions involved in the lightning strikes data (J « 2.8ˆ106

and the number of impacts can easily reach 300, 000 for some seasons if one
applies any method from Section 4 to Ys,m), the previous methodologies are
computationally expensive and can lead to numerical instabilities. A way to
alleviate these problems is to use subsampling strategies, which can also yield
more robust estimates (see e.g. Humbert et al. (2022)). In the framework of point
processes, subsampling corresponds to a thinning process (see Daley et al., 2003,
Møller and Waagepetersen, 2003, Cronie et al., 2023). In particular, if π stands
for the retaining probability (i.e. the thinning probability is equal to 1 ´ π)
assumed to be constant over space and time for the sake of simplicity, then it
is well-known that the intensity ρsub of the thinned point process Ysub is equal
to ρsubpyq “ πρpyq. Hence if ρpyq “ exppβJCpyqq, all methods described in
Section 4 can be applied to estimate β based on Ysub up to an offset term.
All remarks made on parametric methods summarized in Table 1 apply in the
same way if one considers Ysub instead of Y. The subsampling procedure could
also be repeated and averaged over independent replications as investigated by
Cronie et al. (2023) for cross-validation techniques.

However, if we see our dataset as counts of impacts per cell ∆j (or pres-
ence/absence of an impact per cell), the dataset is highly unbalanced as shown
in Figure 3. So if one samples cells independently, there is a high probability
that the subsample contains only cells with no data point. For such subsam-
ples, parametric methods presented in Section 4 will obviously fail or lead to
numerical instabilities.

This practical problem is well-known in classification, machine learning tasks
and regression problems, see e.g. Fernández et al. (2018), Spelmen and Porkodi
(2018) and the references therein. In the context of spatial point proceses, Bad-
deley et al. (2015, Section 9.10.3) have also considered this problem and describe
a subsampled version of BRLlogit (pixel logistic regression) where cells with im-
pacts are more likely to appear in the subsample than empty cells. The goal
of this section is to propose extensions of methods described in Section 4 for
zero-deflated subsamples, that is for subsamples of Nj or Ij such that cells with
no data point are less likely to appear (for instance) in the resulting subsample.
A summary of these subsampled versions is proposed in Table 2.

5.2. Subsampled version of BRLlogit

We formalize and slightly extend Baddeley et al. (2015, Section 9.10.3). For
ℓ “ 0, 1, let Jℓ “ tj “ 1, . . . , J : Ij “ ℓu be the set of empty and non-empty cells
and let Jℓ be a sample from Jℓ with constant inclusion probability πℓ “ Ppj P

Jℓ | Ij “ ℓq and let J “ J0 Y J1. Thus, J is a discrete random set with on
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average π0JPpIj “ 0q elements corresponding to empty cells and π1JPpIj “ 1q

indices corresponding to cells containing at least one data point. The variables
Ij | j P J are Bernoulli random variables with mean

PpIj “ 1 | j P J q “ Ppj P J | Ij “ 1q
PpIj “ 1q

Ppj P J q
“

π1

Ppj P J q
PpIj “ 1q.

Proceeding similarly for PpIj “ 0 | j P J q yields

PpIj “ 1 | j P J q

PpIj “ 0 | j P J q
“

π1

π0

PpIj “ 1q

PpIj “ 0q
. (5.1)

Now, let us keep the spirit of the method BRLlogit and (wrongly) assume that

logitPpIj “ 1q “ logpδjq`βJCj . Then, Equation (5.1) becomes the cornerstone
of Section 5: the likelihood of the Ij | j P J can still be used to estimate β using
a standard logistic regression, but now with offset term plogpδjq`logpπ1{π0qqjPJ .

5.3. Subsampled version of BRLcloglog

We sample as in the previous section but we now assume that Y is, as in Sec-
tion 4.4, a spatio-temporal Poisson point process, which implies that PpIj “

1q “ 1 ´ exppδj exppβJCjqq. Using this and (5.1), we can deduce that

g´1 pPpIj “ 1 | j P J qq “ log δj ` βJCj (5.2)

where for any t P p0, 1q

g´1ptq “ log

ˆ

log

ˆ

1 `
π0

π1

t

1 ´ t

˙˙

. (5.3)

In other words, given J and under the Poisson assumption, the likelihood of the
Bernoulli random variables Ij , j P J , corresponds to a logistic regression with
link function (5.3) and offset term plog δjqjPJ . It is worth pointing out that when
π0 “ π1, the link function (5.3) reduces to the complementary log-log function.
This is why we suggest the name of clogclog.sub for this link function (see
Table 2). Similarly to the method BRLcloglog, its subsampled version is in general
not robust to the Poisson assumption.

5.4. Subsampled version of CLRL and WCLRL

Following Sections 4.2 and 5.2, we can propose the following subsampled version
of CLRL (the subsampled version of WCLRL is similar). Let N (resp. J ) be a
sample of tj “ 1, . . . , N ` J : Ĩj “ 1u (resp. tj “ 1, . . . , N ` J : Ĩj “ 0u) with

inclusion probabilities π1 “ Ppj P N | Ĩj “ 1q, π0 “ Ppj P J | Ĩj “ 0q and let
K “ N Y J . Then, it is clear from Section 5.2 that

logit PpĨj “ 1 | j P Kq “ log

ˆ

π1

π0

˙

` logpδjq ` logit PpĨj “ 1q.
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A subsampled version of CLRL is easily deduced: we estimate β by a logis-
tic regression of pĨjqjPK in terms of pCjqjPK with logit link and offset term
plog π1{π0 ` log δjqjPK. It is worth pointing out that the subsampled version of
CLRL (and WCLRL) is fundamentally different from the other methods in the
sense that we sample according to the values of the Ĩj , i.e. we sample from the
data points with probability π1 and independently from the cells with probabil-
ity π0. This subsampling is less natural than the one used for the other methods
where we sample from cells with or without impact.

5.5. Subsampled version of PL

As seen in Section 4.1, the method PL corresponds to a Poisson regression of
the random variables Nj with the canonical log link. So a subsampled version
of this method can be designed by subsampling these random variables. For any
ℓ P N, let Jℓ be a sample from Jℓ “ tj “ 1, . . . , J : Nj “ ℓu with inclusion
probability τℓ “ Ppj P Jℓ | Nj “ ℓq. Given J “ Yℓě0Jℓ, the Nj ’s are discrete
random variables with (conditional) mean

E pNj | j P J q “
ÿ

ℓě0

ℓPpNj “ ℓ | j P Jℓq

“

8
ÿ

ℓ“0

ℓPpj P Jℓ | Nj “ ℓq
PpNj “ ℓq

Ppj P Jℓq

“

8
ÿ

ℓ“0

ℓPpj P Jℓ | Nj “ ℓq
PpNj “ ℓq

Ppj P J q

“
ÿ

ℓą0

ℓPpNj “ ℓq
τℓ

Ppj P J q
. (5.4)

Assuming τ0 “ π0 and τℓ “ π1 for any ℓ ě 1, which implies we sample according
to the values of Ij as in Sections 5.2-5.3, leads to

EpNj | j P J q “
π1

Ppj P J q
EpNjq

and then to

logEpNj | j P J q “ log

ˆ

π1

Ppj P J q

˙

` logpδjq ` βJCj .

The problem is that Ppj P J q is unknown and depends on the parameter vector
β. The likelihood of the Nj | j P J is therefore no more a Poisson regression.
We suggest to estimate Ppj P J q by π01pj P J0q ` π11pj P J1q. This estimation
leads to

logEpNj | j P J q “ oj ` βJCj with oj “ log

ˆ

π1

π0
1pj P J0q

˙

` logpδjq

which can now be implemented by a Poisson regression with log link and offset
term pojqjPJ .
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5.6. A brief simulation study, remarks and possible extensions

In this section, we propose a short simulation study to underline the interest and
efficiency of zero-deflated subsampling. We consider a spatio-temporal Poisson
point process with intensity model ρpyq “ exppβJCpyqq where β P R3 (nC “ 3)
with β2 “ β3 “ 1. The first covariate is 1 (thus β1 is an intercept term) and
the covariate functions C2pyq and C3pyq are discretized such that C2j , C3j are
realizations of standard normal random variables for j “ 1, . . . , J . Thus, the
Nj ’s are Poisson random variables with mean µj “ exppβJCjq and we adjust
β1 such that on average on the sample with size J , we have 50%, 90%, 99% or
99.9% of ’empty cells’.

Figure 4 (top) constitutes the baseline. We generate B “ 500 replications
of the previous model and estimate β using methods described in Section 4
(no subsampling). We depict the logarithms of the empirical (average absolute)
biases, standard deviations and root mean squared errors (RMSE) in term of
log2pJq for J “ 2k and k “ 9, . . . , 16. As mentioned in Section 4, the method
BRLlogit is the only method which is based on a biased estimating equation due
to the misspecification of the link function. That is why this method leads to
non negligible bias. All other methods lead to asymptotically unbiased estimates.
We note first that the larger the number of empty cells, the larger the bias and
second that the difference with the method BRLlogit is less obvious when the
proportion of empty cells reaches 99.9%. In terms of variance, we first observe
the linear trend which means that the variance of estimates seems to decrease as
a power J and this for any configuration of ’empty cells’. The best method seems
to be the Poisson likelihood one (method PL). Again the variances are higher
and the differences between all methods less important when the proportion of
empty cells increases.

To evaluate methods described in Section 5 which are based on subsampling
strategies, we start with a single simulation with length J “ 2kpk “ 9, . . . , 16q

and estimate β based on B “ 500 subsamples. We set π1 “ 1 and π0 “ 2´2 “

25%, then π0 “ 2´5 “ 3.1% (Figure 10) and π0 “ 2´8 “ 0.4% (Figure 4
(bottom). Thus, for these simulations, for each value of J and π0, estimates are
based on data with length on average Jpp`π0p1´pqq where p if the proportion of
non-empty cells. The behaviors of empirical biases, standard deviations and thus
root mean squared errors are more erratic than in the situation where π0 “ 1 (no
subsampling). Also the values of the different scores are higher than the baseline
situation but the comments on the different methods still apply. In particular
the root mean squared errors tend to 0 with J (except for the method BRLlogit)
for any value of 1 ´ p (the proportion of empty cells). We have presented here
results for a very small value of π0 (more moderate situations are presented in
Figure 10). This intrinsically shows the efficiency of zero-deflated procedures
presented in Section 5 including the definition and estimations of offset terms.

This section convinces us of the interest of zero-deflated subsampling type
procedures. Overall, when the proportion of empty cells is upto 90% or for
moderate sample sizes and higher value of 1´p, the Poisson likelihood could be
recommended. In extreme situations and for large sample sizes, it is harder to
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distinguish the different methods. Finally, as expected there are no differences
between the methods CLRL and WCLRL. Only the last one is used in Section 6
as it is faster than the other one.
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Fig 4. Logarithms (in base 2) of empirical (average absolute) biases, standard deviation and
root-mean squared errors for estimates of β “ pβ1, 1, 1q in terms of log2pJq based on B “ 500
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6. Back to the lightning strikes dataset

We return to the dataset described in Section 2, and model it as a spatio-
temporal point process with intensity given by an exponential family with dis-
cretized spatial and spatio-temporal covariates (see details in Section 3). In the
following, we decompose the spatio-temporal point process Y into Ylearn and
Ytest as

Ylearn “ tpx, tq P W ˆ T learnu with T learn “ tt P R` : year P t2013, 2014uu

Ytest “ tpx, tq P W ˆ T testu with T test “ tt P R` : year P t2015uu .

The goal of this section is to estimate the spatio-temporal parametric intensity
function using Ylearn as specified in Section 3, and use the fitted model to
predict the spatio-temporal intensity of Ytest, so in 2015. More precisely, for any
s,m P S ˆ M (ie for any season and 6-hour period of the day), we predict the
spatio-temporal intensity of Ytest

s,m by learning the one of Ylearn
s,m . Let W ˆT test

s,m “
Ť

jPJ test
s,m

∆j . Thus J test
s,m is the set of indices of cells corresponding to s,m in the

test dataset and we intend, in particular, to compare the variables Nj,s,m and

N̂j,s,m for j P J test
s,m , where

Nj,s,m “ Np∆j,s,mq “
ÿ

yPYtest
s,m

1py P ∆j,s,mq

N̂j,s,m “

ż

∆j,s,m

exppβ̂
J

s,mCpyqqdy “ exppβ̂
J

s,mCjq

since the covariates are constant over ∆j,s,m and since we assume without loss of

generality that δj,s,m “ |∆j,s,m| “ 1. In what precedes, one has of course β̂s,m “

β̂s,mpYlearnq. We can also decide to compare Nj,s and N̂j,s, ie observations and

predictions averaged over the 6-hour periods, or Nj and N̂j , ie observations and
predictions averaged over 2015.

Evaluating the quality of predictions is a tricky task for which several ap-
proaches exist. Section 6.1 discusses the criteria we focused on, while Section 6.2
provides empirical results on the lightning strikes dataset.

We end this section by emphasizing that we use the term ’prediction’ in
the machine learning way. Our goal is to characterize globally the intensity of
lightning strikes by spatial and spatio-temporal covariates and we use training
and test sets to compare the methodology proposed in this paper. We do not
mean ’prediction’ as a short-term forecast.

6.1. Criteria used to measure the quality of predictions

To evaluate the ability of different methods to predict the presence/absence of
lightning strikes, we consider for any s,m and any j P J test

s,m , Ij,s,m “ 1pNj,s,m ą

0q and Îj,s,m “ 1pN̂j,s,m ą 0q and compute standard metrics such as areas under
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ROC Curve and Precision-Recall Curve, denoted respectively by AUCs,m and
PPVs,m; see e.g. Murphy (2012, Section 5.7.2).

To evaluate the ability of predicting higher values of number of impacts, we
suggest the metric WWs,m (for weighted Wasserstein). This metric, justified
later, is defined as

WWs,m “ ω

ż 1

0

|Lp,s,m ´ Rp,s,m| dp (6.1)

with ω “ fpNs,m{N̂s,mq where Ns,m and N̂s,m denote the total number on
J test
s,m of observed and predicted lightning strikes in 2015’s season s and 6-hour

period of the day m, and fpxq “ x1px ě 1q ` x´11px ă 1q. Using the function
j̃ : Rd ˆ R` Ñ t1, . . . , Ju given by j̃pyq “

ř

s,m

ř

jPJ test
s,m

j1py P ∆j,s,mq which

identifies the spatio-temporal cell an impact at location y belongs to, we define
for ν̄s,m, an upper-bound of maxjPJ test

s,m
N̂j,s,m

Lp,s,m “
1

Ns,m

ÿ

jPJ test
s,m

Nj,s,m1pN̂j,s,m ď pν̄s,mq

“
1

Ns,m

ÿ

yPYtest
s,m

1pN̂j̃pyq,s,m ď pν̄s,mq (6.2)

Rp,s,m “
1

N̂s,m

ÿ

jPJ test
s,m

N̂j,s,m1pN̂j,s,m ď pν̄s,mq

“
1

N̂s,m

ż

WˆT test
s,m

1pN̂j,s,m ď pν̄s,mqρpy; β̂s,mqdy.

As a first comment, let δp “ Ns,mLp,s,m ´ N̂s,mRp,s,m. It is worth pointing out
that

δp “
ÿ

yPYtest
s,m

hpy;Ytestq ´

ż

WˆT test
s,m

hpy;Ytestqρpy; β̂s,mpYlearnqqdy

where hpy;Ytestq “ 1pN̂j̃pyq,s,m ď pν̄s,mq. Such a random variable is a bivari-

ate residual functional for point processes. More precisely if ρp¨; β̂q “ ρp¨;βq

(ie the true intensity), δp would be a bivariate innovation functional as defined
by Cronie et al. (2023), proved to be centered under the true model. The crite-
rion (6.1) can therefore be viewed as a self-normalized weighted combination of
generalized residuals.

But we can actually say more about the intuition of this criterion. By Camp-
bell theorem, we see that Rp,s,m is close to

qRp,s,m “
1

N̂s,m

ÿ

yP|Ytest
s,m

1pN̂j̃pyq,s,m ď pν̄s,mq (6.3)
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where qYtest
s,m is a spatio-temporal point process with N̂p,s,m events and inten-

sity function ρp¨; β̂s,mpYlearnqq. Now given Ns,m (resp. given N̂s,m), we ob-
serve that (6.2) (resp. (6.3)) is the empirical cumulative distribution func-
tion evaluated at p based on the sample tN̂j̃pyq,s,m{ν̄s,m, y P Ytest

s,mu (resp.

tN̂j̃pyq,s,m{ν̄s,m, y P Y̌test
s,mu). Let F̂ test

s,m and F̌ test
s,m be these two empirical cdf,

we deduce that

ż 1

0

|Lp,s,m ´ Rp,s,m|dp «

ż 1

0

|F̂ test
s,m ppq ´ qF test

s,m ppq|dp

which, given Ns,m and N̂s,m is the standard Wasserstein distance between the

two empirical distributions. Finally, the coefficient ω “ fpNs,m{N̂s,mq in (6.1)

is aimed to take into account the total mass of Ytest
s,m and qYtest

s,m. All these intu-
itions lead us to propose the notation WWs,m for weighted Wasserstein for the
criterion defined by (6.1). For several years, the Wasserstein distance has been
recognized as a robust optimal transport-based metric with numerous applica-
tions in classification and learning algorithms. See, for example, Frogner et al.
(2015) Frogner et al. (2015) or Arjovsky et al. (2017) Arjovsky et al. (2017) for
more insights.

To summarize, on the one hand the areas under ROC Curve and Precision-
Recall Curve, AUCs,m and PPVs,m are used to evaluate the ability of different
methods to predict the presence/absence of lightning strikes, and on the other
hand, the WWs,m index is used to evaluate the ability of predicting higher
values of number of impacts.

6.2. Results

As explained in the beginning of Section 6, we now estimate the spatio-temporal
parametric intensity model from years 2013-2014 via Ylearn, and then predict
the spatio-temporal intensity of Ytest (for 2015). This is done by fixing a sea-
son s and a 6-hour period of the day m. For the sake of brevity, we show the
results for two pairs of ps,mq only, namely (summer, 12:00-18:00) and (winter,
00:00-06:00), which respectively correspond to cases with the most and the least
proportion of non empty cells among all cells. The competitors defined in Sec-
tion 4 are combined with the subsampling strategies detailed in Section 5. All
the combinations are tested with the whole sample (π1 “ 100%, π0 “ 100%),
and for different subsampling rates π1 “ 1, π0 P t10%, 1%, 0.1%u, each time
aggregating either on 1, 3 of 10 bags (ie subsamples).

Tables 3-4 summarize the results obtained. We report the values of prediction
critera PPV, AUC and WW detailed in Section 6.1, as well as the calculation
time per bag. From these two tables, a few comments can be formulated: first
of all, whatever the criterion, it seems useless to choose more that one bag;
second, note that AUC does not appear so informative, since all methods and
subsampling rates achieve the same kind of performance. This is also the case for
the PPV criterion in winter 00:00-06:00 (Table 4). Note also that PPV is quite
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small, in particular for winter (see Table 4). This confirms that the prediction
of lightning storms is a very difficult task. However, this should be compared
to the PPV achieved by the random classifier, which is the proportion of non-
empty cells for these pairs of (season, moment) (0.0154 for (summer, 12:00-
18:00) and 0.0004 for (winter, 00:00-06:00)). Two methods (PL and BRLcloglog)
stand out for their stability concerning the subsampling rate, as demonstrated
by the behaviors of PPV and WW in Table 3. Additionally, in the absence of
subsampling (π0 “ 1), PPV lacks discrimination. However, in terms of WW,
PL and WCLRL slightly outperform the other methods. Notably, subsampling
significantly impacts computational time reduction (by at least a factor of 40)
without compromising results.

In a nutshell, the Poisson method PL with π0 “ 0.1%, Nbag “ 1 appears as
the best trade off between prediction quality and computation cost. This method
and parameters are used in Figure 5 to illustrate the quality of predictions over
time and space in 2015. We report observed and predicted cumulative number
of impacts and maps of intensities over a season of 2015 and over 2015. The
cumulative number of impacts are quite well predicted even if some departures
can be observed in the end of Spring and Summer. From a spatial point of
view, it is interesting that the fitted model is able to reproduce most of activity
phenomena close to the Channel (North West), the French Alps (South East)
and Pyrenees. There are however a few areas which are not well captured: the
Summer activity in the area of Bordeaux (South West), the Winter and Summer
activity north to Corsica island.

7. Conclusion

In this paper, we have proposed zero-deflated subsampled versions of standard
composite likelihoods methods to estimate exponential family intensity models
for spatio-temporal point processes. We have in particular focused on the sit-
uation where the covariates are piecewise constant taking the opportunity to
review standard composite likelihood methods in this situation. We have the-
oretically justified these subsampled extensions. The methods perform well on
simulations, at least for spatio-temporal Poisson point processes. When they are
applied to the lightning strikes dataset, we have concluded that the subsampled
Poisson likelihood provides the best compromise in terms of stability, prediction
errors and computational time.

We believe this work leads to several perspectives. It would be first interesting
to study more deeply these procedures. For instance, can we still be ensured
that the estimator derived by these procedures is consistent and asymptotically
normal? Extending these procedures for non piecewise constant covariates is a
second perspective. Finally, investigating inhomogeneous subsampling, i.e. for
instance letting π0 and π1 depend on the cell ∆j is also a direction for further
research.

Regarding the dataset application, modelling second-order characteristics of
the process or even better modelling the distribution of Y for instance as a mix-
ture of a temporal Hawkes process and Neymann-Scott or log-Gaussian spatial
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Method

BRLlogit BRLcloglog WCLRL PL

AUCs,m

π0 “ 100%, Nbags “ 1 89.7 89.6 89.9 89.8

π0 “ 10%, Nbags “ 1, 3, 10 89.7 89.6 89.9 89.8

π0 “ 1%, Nbags “ 1, 3, 10 89.7 89.6-89.5 89.9 89.8

π0 “ 0.1%, Nbags “ 1, 3, 10 89.1-89.3 89.8 89.1 89.7-89.8

PPVs,m

π0 “ 100%, Nbags “ 1 12.9 13 12.2 12.5

π0 “ 10%, Nbags “ 1, 3, 10 12.3 13.2 11.3 12.5

π0 “ 1%, Nbags “ 1, 3, 10 11.1-11 13.4-13.5 9.8-9.9 12.8-12.5

π0 “ 0.1%, Nbags “ 1, 3, 10 9.1-9.4 12.9-12.8 8.7 11.9-12.6

WWs,m

π0 “ 100%, Nbags “ 1 8.1 6.4 3.5 3.2

π0 “ 10%, Nbags “ 1, 3, 10 9.4-9.3 5.8-5.9 4.9 3.2

π0 “ 1%, Nbags “ 1, 3, 10 11.9-12.1 12-12.2 9-8.6 3.2-3.1

π0 “ 0.1%, Nbags “ 1, 3, 10 13.2-12.8 5.2-5 19.7-18.5 4.5-3.1

Time (in sec.) per bag

π0 “ 100% 58 98 47 46

π0 “ 10% 6 23 5 6

π0 “ 1% 1 6 2 2

π0 “ 0.1% 1 3 1 1

Table 3
Evaluation of prediction metrics (AUCs,m, PPVs,m and WWs,m) and computational time
for subsampled composite likelihood methods for different values of π0 and Nbags (π1 “ 1).
Predictions are done for the season s=summer and the time period m=12:00-18:00. Results
for AUCs,m, PPVs,m and WWs,m have been multiplied by 100. Most of criteria are similar

for different values of Nbags. When these numbers are different, we provide the range of
values (the first, resp. the second, value corresponding to Nbags “ 1, resp. Nbags “ 10).



JF Coeurjolly et al./Zero-deflated subsampling for point processes 26

Method

BRLlogit BRLcloglog WCLRL PL

AUCs,m

π0 “ 100%, Nbags “ 1 93.1 93.2 93.3 93.3

π0 “ 10%, Nbags “ 1, 3, 10 93.1 93.2 93.3 93.3

π0 “ 1%, Nbags “ 1, 3, 10 93 93.2-93.1 93.2 93.2-93.3

π0 “ 0.1%, Nbags “ 1, 3, 10 92-92.4 92.7-93.4 92.9 92.9-93.4

PPVs,m

π0 “ 100%, Nbags “ 1 2 2.1 2.3 2.3

π0 “ 10%, Nbags “ 1, 3, 10 2 2.1 2.3 2.3

π0 “ 1%, Nbags “ 1, 3, 10 2 2.1 2.2 2.2-2.3

π0 “ 0.1%, Nbags “ 1, 3, 10 1.3-1.6 2-2.1 1.8-1.9 2-2.3

PPVs,m

π0 “ 100%, Nbags “ 1 58.8 58.8 42.4 42.4

π0 “ 10%, Nbags “ 1, 3, 10 57.5-58.9 57.4-58.4 43.5-42.7 42.7-41.4

π0 “ 1%, Nbags “ 1, 3, 10 61.8-65.6 51.3-53.3 48-45.2 39.7-42.6

π0 “ 0.1%, Nbags “ 1, 3, 10 40.3-53.9 38.8-47.2 40.2-45 25.8-41.9

Time (in sec.) per bag

π0 “ 100% 86 127 85 76

π0 “ 10% 7 11 7 6

π0 “ 1% 0.9 2 0.6 0.6

π0 “ 0.1% 0.3 0.5 0.1 0.1

Table 4
Evaluation of prediction metrics (AUCs,m, PPVs,m and WWs,m) and computational time
for subsampled composite likelihood methods for different values of π0 and Nbags (π1 “ 1).
Predictions are done for the season s=winter and the time period m=0:00-6:00. Results for
AUCs,m, PPVs,m and WWs,m have been multiplied by 100. Most of criteria are similar for
different values of Nbags. When these numbers are different, we provide the range of values

(the first, resp. the second, value corresponding to Nbags “ 1, resp. Nbags “ 10).
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Fig 5. Observed and predicted cumulative number of impacts (top) and maps of logarithms
of numbers per cell (bottom). Results are presented for each season in 2015 (thus aggregated
over periods of days) and globally for 2015.
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Cox process for the spatial part could be an interesting first attempt. Such a
modelling could be pertinent if one in addition intend to provide a short-term
forecast of electrical activity.
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Appendix A: Additional figures

A.1. Exploratory data analysis
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Fig 6. (Top) Daily counting process (left) and cumulative counting process (right) of impacts
numbers over France from 2010 to 2015. (Bottom) Distribution of impacts in terms of the
time of day for each season over France and Alps (first two columns on the left) and over the
Channel and Pyrénées (last two columns on the right).
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Fig 7. Logarithms of non-parametric kernel spatial intensity estimates of the intensity of
impacts aggregated by month.
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Fig 8. (Top) Maps of log(CAPE) (top left); humidity (top right); θ1
w at 850 hPa (Wet-bulb

potential temperature at 850 hPa) (bottom left); and temperature at 20m (bottom right),
overlaid by the locations of impacts on July 14, 2013 between 12am and 6pm. (Bottom, from
left to right) Numbers of impacts between 12am and 6pm for each day from 2013 to 2015,
around location x0 (defined in Figure 1); and covariates at 12am at location x0, in terms of
time (CAPE; Humidity; θ1

w; Temperature at 20m).
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Fig 9. Pairplots (lower triangular part), marginal distribution (diagonal), and bivariate dis-
tributions (upper triangular part) of log(CAPE) (0 values for CAPE are omitted), Humidity,
θ1
w, Temperature at 20m around location x0 at 12 am. Yellow (resp. blue) color corresponds
to times for which at least one (resp. no) lightning strike is observed in the corresponding cell
during the period 12:00-18:00. The time period spans from 2013 to 2015.
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A.2. Simulation study
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Fig 10. Description similar to Figure 4 with π0 “ 25% (top) and π0 “ 3.1% (bottom).
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