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Abstract
While univariate nonparametric estimation methods have been developed for estimat-
ing returns in mean-downside risk portfolio optimization, the problem of handling
possible cross-correlations in a vector of asset returns has not been addressed in port-
folio selection. We present a novel multivariate nonparametric portfolio optimization
procedure using kernel-based estimators of the conditional mean and the conditional
median. The method accounts for the covariance structure information from the full
set of returns. We also provide two computational algorithms to implement the esti-
mators. Via the analysis of 24 French stock market returns, we evaluate the in-sample
and out-of-sample performance of both portfolio selection algorithms against opti-
mal portfolios selected by classical and univariate nonparametric methods for three
highly different time periods and different levels of expected return. By allowing for
cross-correlations among returns, our results suggest that the proposed multivariate
nonparametric method is a useful extension of standard univariate nonparametric port-
folio selection approaches.

Keywords Downside risk · Forecasting · Multivariate kernel-based mean
estimation · Multivariate kernel-based median estimation · Semivariance

JEL Classification C14 · C30 · G11 · G17

1 Introduction

Modern portfolio theory (MPT) is one of the most applied and recognized investment
approaches used by investors today. The theoretical basis on which it relies is not very
complicated and easy to apply, which is one of the reasons for its success. Rather than
analyzing each investment individually, the key idea is to have a look at the portfolio as
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awhole and hence take into account the correlation structure between assets. In fact, the
MPToriginates from the so-calledmean–variance (MV) portfoliomodel ofMarkowitz
(1952); see also Markowitz (1959, 1987). The optimizing asset allocation is simply
defined as the process of mixing asset weights of a portfolio within the constraints
of an investor’s capital resources to yield the most favorable risk-return trade-off. For
typical risk-averse investors, an optimal combination of investment assets that gives a
lower risk and a higher return is always preferred.

The variance, which is the deviation above and below the mean return, is used as
a risk measure in portfolio optimization to find the trade-off between risk and return.
In order to compare investment options, Markowitz developed a mathematical frame-
work to describe each investment or each asset class using unsystematic risk statistics.
Indeed, by quantifying investment risk in the form of the mean, variance, and covari-
ance of returns, Markowitz gave investors a mathematical approach to asset selection
and portfolio management. He used these statistics to derive a so-called efficient fron-
tier, or risk-reward equation, where every portfolio maximizes the expected return
for a given variance, or equivalently minimizes variance for a given expected return.
The efficient frontier flattens as it goes higher because there is a limit to the return
an investor can expect. In a complete market without riskless lending and borrowing,
a whole range of efficient asset portfolios with stochastic dominant features can be
determined, which collectively delineates a convex MV frontier. However, variance is
a questionable measure of risk for at least two reasons:

(i) it makes no distinction between gains and losses;
(ii) it is an appropriatemeasure of risk onlywhen the underlying distribution of returns

is symmetric with moments of order two.

Markowitz (1959) recognized the asymmetrical inefficiencies inherited in the tradi-
tional MV model. To overcome this drawback, he suggested a downside risk (DSR)
measured by the semivariance, which takes into consideration the asymmetry and the
risk perception of investors. In fact, symmetry of asset return distributions have been
widely rejected in practice, see, for example, Eftekhari and Satchell (1996). This fact
justifies the use of semivariance when the presence of skewness or any other measure
of asymmetry is observed. The semivariance is often considered as a more plausible
risk measure than the variance. However, mean–semivariance optimal portfolios can-
not be easily derived as the semicovariance matrix is endogenous and not symmetric
(see, e.g., Estrada 2004, 2008), and the classical Lagrangian method is not applicable
to resolve the optimization problem.

de Athayde (2001) has developed an algorithm to construct a mean–DSR portfolio
frontier. Although this frontier is continuous and convex, it has several kinks due to the
fact that asset returns are not identically distributed. Clearly, the frontier is made on
segments of parabolas (piecewise of quadratic functions), each one becoming steeper
and steeper as wemove toward the extremes, in either direction. They are connected to
each other producing the successive kinks. The more observations we have, the more
parabolas will appear and the smaller the segment of each will become. Otherwise,
the number of convexity kinks will increase with the number of observations, getting
closer and closer to each other, until when we reach the asymptotic limit, they will not
be qualified as kinks any more, and the whole portfolio frontier will have a smooth
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shape which can be compared to the one obtained with the mean–variance portfolio
model of Markowitz (1952).

Since, from a practitioner point of view, we always have a finite number of observa-
tions, the DSR portfolio frontier will always exhibit such convexity kinks. In order to
overcome this problem, de Athayde (2003) used nonparametric techniques to estimate
smooth continuous distribution of the portfolio in question. The major contribution
is to replace returns by their mean kernel estimates (nonparametric mean regres-
sion). The advantage of this technique is to provide an effect similar to the case in
which observations are continuous yielding a smoother portfolio frontier. Although
this contribution is innovative, the paper is unstructured with no simulations and no
applications. Another neglected aspect which deserves serious attention concerns the
theory: a great confusion is palpable in the estimators writing. Ben Salah et al. (2018a)
revisited deAthayde’swork bymaking it more rigorous. Themean nonparametric esti-
mator is clarified and its parameters are exhibited as well as their practical choices. The
corresponding optimization algorithmswere coded using the R programming language
and empirically validated on real data. Secondly, taking advantage on the robustness of
the median, de Athayde’s work is improved by proposing another method to optimize
a portfolio. This new method is based on nonparametric estimation of conditional
median based on kernel methods. It is well known that the median is more robust
than the mean and less sensitive to outliers. Returns will be replaced by their non-
parametric median estimators. Nevertheless, the computing step and the convergence
of the algorithm takes a long time due to the construction of the estimators: the asset
estimation returns are derived from the estimation of the portfolio returns and they
change at each computing step. Convergence is assumed to occur when the portfolio
weights stay within some fixed tolerance value across successive iteration of the opti-
mization stage. Contrary to de Athayde (2003), Ben Salah et al. (2018a, b) proposed
a new strategy to speed up the convergence of the algorithm: the idea is to start by
estimating all the returns of each asset using kernel mean or median estimates. The
portfolio return estimates are then obtained as a linear combination of the different
asset return estimates, and the overall CPU load is drastically reduced.

Although some progresses have been made, all methods introduced above are uni-
variate and do not take into account any possible correlation between assets. In this
paper, an alternative nonparametric method to derive portfolio frontiers is proposed.
The proposed approach is multivariate and based on vectorial nonparametric estima-
tion of returns using multivariate mean and median. It has the advantage of taking into
consideration the possible correlation between asset returns without specifying any
specific dependence structure.

The paper is organized as follows. Section 2 presents standard models of portfolio
optimization. Section 3 introduces the univariate and multivariate kernel-based esti-
mators for the conditional mean and median. We also discuss their optimal parameter
values. These estimators give an estimator of the DSR. Section 4, based on the previ-
ous estimators, exhibits two DSR optimization algorithms to get an optimal portfolio
and the corresponding efficient frontier. Based on real data, Sect. 5 provides empirical
support for the proposed multivariate nonparametric portfolio selection method and
compares its efficiency with classical and univariate nonparametric portfolio selection
methods. Section 6 contains some concluding remarks.
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2 Standard approaches

2.1 TheM–Vmodel

A mean–variance analysis is the process of weighing risk (variance) against expected
return. By looking at the expected return and variance of an asset, investors attempt
to make more efficient investment choices: seeking the lowest variance for a given
expected return or seeking the highest expected return for a given variance level.
More precisely, the classical MV portfolio optimization model aims at determining
the proportions (weights) ωi of a given capital to be invested in each asset i belonging
to a predetermined set or market, so as to minimize the risk of the return of the whole
portfolio for a specified expected return E∗.

Let m denote the number of assets, {Ri }mi=1 a set of random returns, and {Ri,t }Tt=1
the set of observed returns of size T > m ≥ 2. In addition, letµi be the expected return
of asset i , and (σi j ) the (i, j)th coefficient of the m-dimensional variance-covariance
matrixM of asset returns. Then, for a required level E∗ of the portfolio return Rp ,t =∑m

i=1 ωi Ri,t , the MV model can be written as a convex linear optimization problem
with the following form:

min
ω

ω′Mω, subject to ω′µ = E∗ and ω′1 = 1, (1)

where ω = (ω1, . . . ,ωm)
′, µ = (µ1, . . . , µm)

′, and 1 is an m-dimensional vector
whose elements are all one. The optimization problem can be solved by a number of
efficient algorithms with moderate computational effort, even for large values of m.
Moreover, (1) can be solved for a specific value of E∗ or, alternatively, for several
values of E∗ and thus generating the minimum variance set. Using the Lagrange
multiplier method, the m × 1 vector of optimal (op) weights is given by

ωop =
αE∗ − λ

αθ − λ2
M−1µ+ θ − λE∗

αθ − λ2
M−11, (2)

where α = 1′M−11, λ = µ′M−11, and θ = µ′M−11. The optimal variance of Rp ,t
is obtained by pre-multiplying (2) with ω′

opM, that is

σ 2
op =

α(E∗)2 − 2λE∗ + θ

αθ − λ2
. (3)

In this case, the efficient frontier curve is continuously convex. It is a parabola in
mean–standard deviation space. Either way, it is important to notice that the risk of
the portfolio can be expressed as a function of the risk of the individual assets in
the portfolio. Moreover, all the variances, covariances, and expected returns of the
individual assets are exogenous variables.
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2.2 The DSRmodel

However, the variance is a questionable measure of risk for at least three reasons: (i)
it makes no distinction between gains and losses; (ii) it is an appropriate measure of
risk only when the underlying distribution of returns is symmetric; and (iii) it can
be applied as a risk measure only when the underlying distribution of the returns is
symmetric.

Markowitz (1959) recognized the asymmetrical inefficiencies inherited in the tra-
ditional MV model. To overcome this drawback, he suggested to use a downside risk
(DSR) defined by

DSR = 1
T

T∑

t=1

[min(Rp ,t − B, 0)]2, (4)

where B is any benchmark return chosen by the investor. The benchmark can be equal
to 0, or the risk-free rate R f , any stock market index, or the mean µ p of the portfolio
return Rp ,t . When B = µ, DSR is a downside risk measure called semivariance.

The DSR is a more robust measure of asset risk that focuses only on the risks below
a target rate of return. This measure of risk is more plausible for several reasons. First,
investors obviously do not dislike upside volatility; they only dislike downside volatil-
ity. Second, the DSR measure is more useful than the variance when the underlying
distribution of returns is asymmetric and just as useful when the underlying distribu-
tion is symmetric. In other words, the DSR is at least a measure of risk as useful as the
variance. Finally, the DSR combines the information provided by two statistics, vari-
ance and skewness, and hence making it possible to use a one-factor model to estimate
required returns; see, e.g., Nawrocki (1999) and Estrada (2006). The corresponding
optimization problem can be written as follows:

min
ω

ω′MSRω subject to ω′µ = E∗ and ω′1 = 1, (5)

where the elements of the m × m matrixMSR are given by

Mi, j (B) =
1
T

T0∑

t=1

(Ri,t − B)(R j,t − B), (i, j = 1, . . . ,m), (6)

and where T0 is the period in which the portfolio underperforms the target return B.
The above framework provides an exact estimate of the portfolio semivariance.

However, finding the portfolio with a minimum DSR is not an easy task. The major
obstacle is that the semicovariance matrix MSR is endogenous; that is, a change in
weights affects the periods in which the portfolio underperforms the target rate of
return, which in turn affects the elements of MSR. To get an approximate solution of
(5), Hogan and Warren (1972) define the sample semicovariance between assets i and
j as
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MHW
i, j (R f ) =

1
T

T∑

t=1

(Ri,t − R f ) × min(R j,t − R f , 0), (i, j = 1, . . . ,m). (7)

This definition has two drawbacks. The benchmark return is limited to the risk-free
rate R f and cannot be tailored to any desired benchmark. Moreover, it is usually the
case that MHW

i, j (·) ̸= MHW
j,i (·). This second characteristic is particularly limiting both

formally, i.e., the semicovariance matrix is usually asymmetric, and intuitively, i.e.,
it is not clear how to interpret the contribution of assets i and j to the risk of the
portfolio. Further, the optimization problem (1) is not quadratic anymore which may
cause optimization difficulties.

In order to overcome these drawbacks, Estrada (2004, 2008) defines the sample
semicovariance between assets i and j with respect to a benchmark B as

Mi, j =
1
T

T∑

t=1

min(Ri,t − B, 0) × min(R j,t − B, 0), (i, j = 1, . . . ,m). (8)

This definition can be tailored to any desired B and generates a symmetric (Mi, j =
Mj,i ), nonnegative, definite, semicovariance matrix. Next, the solution of the MV
problem follows directly.

To get a direct solution of (5), a simple and iterative optimization algorithm was
developed by de Athayde (2001) that ensures the convergence to the optimal solution.
However, due to some properties of the frontier, when only a finite number of obser-
vations is available, the portfolio frontier presents some discontinuity on its convexity.
To address this issue, de Athayde (2003) generalizes his algorithm by introducing
univariate kernel-based mean estimators of the returns. This idea provides an effect
similar to the case in which observations are continuous and, moreover, it establishes a
smooth portfolio frontier comparable to that obtained by theMVoptimizationmethod.
Although deAthayde’s contribution is innovative, his two papers are unstructuredwith
no simulations and no applications. Another neglected aspect which deserves serious
attention concerns the theory: a great confusion is palpable in the setup of the estima-
tors. Motivated by these observations, Ben Salah et al. (2018a) revisited de Athayde’s
work by making it more rigorous. In particular, they clarify the kernel-based mean
estimator, exhibit its tuning parameters, and discuss implementation issues. Then,
by taking advantage of the robustness of the median, these authors improved on de
Athayde’s results by replacing the kernel-basedmean return estimators by their kernel-
based median counterparts.

Valuable as the univariate kernel-based estimation methods can sometimes be
in portfolio selection, they do not take into account the possible cross-correlations
between asset returns. Indeed, it is well known that returns are not mutually indepen-
dent. It is therefore worth proposing multivariate, or vector, nonparametric techniques
to estimate smooth continuous distributions of a set of portfolios under study. This is
the topic of the current paper. In particular, we focus on both univariate and multivari-
ate kernel-based mean and median estimators of {Ri,t }. Next, we use the smoothed
continuous distributions of the returns to optimize their corresponding DSR. Finally,
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given an optimal DSR, we discuss the construction of a new and smooth portfolio
frontier, thus providing a more flexible framework for portfolio selection.

3 Nonparametric approaches

In this section, first we introduce the univariate nonparametric estimators of returns of
de Athayde (2001, 2003) and Ben Salah et al. (2018a, b). Then we propose two mul-
tivariate nonparametric, kernel-based, estimators. Throughout the paper we assume
that the vector of random returns Rt = (R1,t , . . . , Rm,t )

′ (t ∈ Z) consists of strictly
stationary and ergodic time series processes taking values in Rm .

3.1 Univariate nonparametric return estimation

Let K (·) be a probability density function satisfying some regularity conditions, and
hT > 0 the bandwidth or smoothing parameter. Here, K : R → R is a so-called kernel
function. Common assumptions on the bandwidth are h ≡ hT → 0, and ThT → ∞
as T → ∞. In addition, let {Ri,t }Tt=1 be a sequence of observations on the process
{Ri,t , t ∈ Z} (i = 1, . . . ,m)with each i th subprocess having a continuous distribution
function and a proper density. Then, at time t , a kernel smoother of the mean (Mn) of
{Ri,t , t ∈ Z} is defined as

R̂ Mn
i,t =

∑T
ℓ=1 Ri,ℓK

(
Ri,t−Ri,ℓ

h

)

∑T
ℓ=1 K

(
Ri,t−Ri,ℓ

h

) , (i = 1, . . . ,m). (9)

Note that (9) is essentially a weighted average of {Ri,ℓ}Tℓ=1 in which the weight given
to each Ri,ℓ decreases with its distance from the observation in question.

The disadvantage of (9) is that it is sensitive to outliers and may be inappropriate
in some cases, such as when the distribution of {Ri,t , t ∈ Z} is heavy-tailed or asym-
metric. In those cases, it may be sensible to use a univariate kernel-based estimator
of the median (Mdn) rather than an estimator of the mean. In particular at time t , and
given an L1-loss function, the estimator is defined as

R̂ Mdn
i,t = argmin

z∈R

∑T
ℓ=1|Ri,ℓ − z|K

(
Ri,t−Ri,ℓ

h

)

∑T
ℓ=1 K

(
Ri,t−Ri,ℓ

h

) , (i = 1, . . . ,m). (10)

Alternatively, one can obtain R̂ Mdn
i,t by solving the equation

FT (z|Ri,t ) =
∑T

ℓ=1 I (Ri,ℓ ≤ z)K
(
Ri,t−Ri,ℓ

h

)

∑T
ℓ=1 K

(
Ri,t−Ri,ℓ

h

) = 1
2
, (i = 1, . . . ,m), (11)
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where FT (·|·) is an estimator of the conditional distribution function of Ri,ℓ given
Ri,t , and I (·) is the indicator function.

Remark 1 The kernel K (·) determines the shape of the weighting function. The use of
symmetric and unimodal kernels is standard in nonparametric estimation. Throughout
the empirical analysis we adopt the Gaussian kernel. For practical problems the choice
of the kernel is not so crucial, as compared to the choice of the bandwidth. For all
univariate andmultivariate kernel-basedmethods,we use the so-called Sheather–Jones
bandwidth, which is generally believed to be a satisfactory way of doing so. Under
certain mixing conditions of the process {Ri,t , t ∈ Z}, uniform convergence rates and
asymptotic normality of the estimators (9) and (10) can be proved; see, e.g., DeGooijer
(2017) and Gannoun et al. (2003) and the references therein.

3.2 Multivariate nonparametric return estimation

Multivariate kernel-based mean and median estimation is a straightforward extension
of plain univariate estimation. Let K(·) : Rm → R be a multivariate kernel density
function with a symmetric positive definite m ×m matrix H known as the bandwidth
matrix. Then, at time t , the multivariate kernel-based mean estimator (M-Mn) and the
multivariate kernel-based median estimator (M-Mdn) of the m-dimensional process
{Rt , t ∈ Z} are respectively defined as

R̂M-Mn
t =

∑T
ℓ=1RℓK

(
H−1(Rℓ − Rt )

)
∑T

ℓ=1K
(
H−1(Rℓ − Rt )

) and

R̂M-Mdn
t = arg min

z∈Rm

∑T
ℓ=1∥Rℓ − z∥K

(
H−1(Rℓ − Rt )

)
∑T

ℓ=1K
(
H−1(Rℓ − Rt )

) , (12)

where ∥ · ∥ is a matrix or vector norm. In this paper, we adopt the Euclidean norm.
Computing the above estimators requires a numerical procedure, which becomes

increasingly difficult to implement as the dimension m increases. As a simplification
the matrix H is often taken to be a diagonal matrix with values {hi ≡ hi,T }mi=1 such
that hi > 0, hi → 0 and Thi → ∞, as T → ∞. In addition, it is common to consider
a product of m univariate kernel functions, i.e., K(u) = ∏m

i=1 K (ui ). Then we can
write the above estimators as follows

R̂M-Mn
t =

∑T
ℓ=1Rℓ

∏m
i=1 K

(
Ri,ℓ−Ri,t

hi

)

∑T
ℓ=1

∏m
i=1 K

(
Ri,ℓ−Ri,t

hi

) and

R̂M-Mdn
t = arg min

z∈Rm

∑T
ℓ=1∥Rℓ − z∥∏m

i=1 K
(
Ri,ℓ−Ri,t

hi

)

∑T
ℓ=1

∏m
i=1 K

(
Ri,ℓ−Ri,t

hi

) . (13)
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A kernel-based estimate of Rp ,t is given by R̃ p ,t = ω′R̃t , where R̃t =
(R̃1,t , . . . , R̃m,t )

′ denotes either R̂M-Mn
t or R̂M-Mdn

t . Given this estimate, a kernel-based
estimate of the DSR follows by replacing Rp ,t in (4) by R̃ p ,t .

4 Multivariate mean–DSR optimization

4.1 Computational algorithms

Recall the optimization problem in (5). Given the set of kernel-based estimates
{R̃i,t }mi=1, the matrix MSR has the following elements

Mi, j (B) =
1
T

T0∑

t=1

(R̃i,t − B)(R̃ j,t − B), (i, j = 1, . . . ,m). (14)

Using the above framework, we propose two algorithms for the optimization of (5).
Compared to the proposal by Ben Salah et al. (2018a), both algorithms account for
possible cross-correlations in the asset returns.

Algorithm I:

(i) Initial stage: Start with an arbitrary portfolio with weight vector ω0 =
(ω0,1, . . . ,ω0,m)

′ and portfolio return R(0)
p ,t = ω′

0Rt . At each time point t , com-
pute the following two univariate nonparametric estimators

R̂(0),Mn

p ,t =
∑T

ℓ=1 R
(0)
p ,ℓK

( R(0)
p ,t−R(0)

p ,ℓ
h

)

∑T
ℓ=1 K

( R(0)
p ,t−R(0)

p ,ℓ
h

) and

R̂(0),Mdn

p ,t = argmin
z∈R

∑T
ℓ=1|R(0)

p ,ℓ − z|K
( R(0)

p ,t−R(0)
p ,ℓ

h

)

∑T
ℓ=1 K

( R(0)
p ,t−R(0)

p ,ℓ
h

) . (15)

In addition, compute the multivariate nonparametric estimators

R̂(0),M-Mn

t =
∑T

ℓ=1RℓK
( R(0)

p ,t−R(0)
p ,ℓ

h

)

∑T
ℓ=1K

( R(0)
p ,t−R(0)

p ,ℓ
h

) ,

R̂(0),M-Mdn

t = arg min
z∈Rm

∑T
ℓ=1∥Rℓ − z∥K

(
R(0)
p ,t−R(0)

p ,ℓ
h

)

∑T
ℓ=1K

(
R(0)
p ,t−R(0)

p ,ℓ
h

) , (16)
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where Rℓ = (R1,ℓ, . . . , Rm,ℓ)
′ and K(·) = Km(·). Let R̃(0)

p ,t denote either

R̂(0),Mn

p ,t or R̂(0),Mdn

p ,t . Then, for a given B and an m-dimensional vector Vt =
(
(R̃(0)

1,t − B), . . . , (R̃(0)
m,t − B)

)′, compute the positive semidefinite matrix M̃0 =
(1/T )

∑
t∈S0 VtV′

t , where S0 = {t : 1 ≤ t ≤ T , (R̃(0)
p ,t − B) < 0}. Next, similar

to (2), compute the m × 1 portfolio weight vector ω1. That is

ω1 =
α0E∗ − λ0

α0θ − λ20
M̃−1

0 µ̃0 +
θ0 − λ0E∗

α0θ0 − λ20
M̃−1

0 1, (17)

where α0 = 1′M̃−1
0 1, λ0 = µ̃′

0M̃
−1
0 1, θ0 = µ̃′

0M̃
−1
0 µ̃0, and where µ̃0 =

(R̃
(0)
1 , . . . , R̃

(0)
m )′ is anm×1vector ofmean returnswith R̃

(0)
i = (1/T )

∑T
t=1 R̃

(0)
i,t

(i = 1, . . . ,m).
(ii) Using (17), compute the portfolio return at time t , i.e., R(1)

p ,t = ω′
1Rt . Next,

compute the univariate nonparametric estimators

R̂(1),Mn

p ,t =

∑T
ℓ=1 R

(1)
p ,ℓK

(
R(1)
p ,t−R(1)

p ,ℓ
h

)

∑T
ℓ=1 K

(
R(1)
p ,t−R(1)

p ,ℓ
h

) and

R̂(1),Mdn

p ,t = argmin
z∈R

∑T
ℓ=1|R(1)

p ,ℓ − z|K
(

R(1)
p ,t−R(1)

p ,ℓ
h

)

∑T
ℓ=1 K

(
R(1)
p ,t−R(1)

p ,ℓ
h

) . (18)

Also, compute the multivariate nonparametric estimators

R̂(1),M-Mn

t =

∑T
ℓ=1RℓK

(
R(1)
p ,t−R(1)

p ,ℓ
h

)

∑T
ℓ=1K

(
R(1)
p ,t−R(1)

p ,ℓ
h

) ,

R̂(1),M-Mdn

t = arg min
z∈Rm

∑T
ℓ=1∥Rℓ − z∥K

(
R(1)
p ,t−R(1)

p ,ℓ
h

)

∑T
ℓ=1K

(
R(1)
p ,t−R(1)

p ,ℓ
h

) . (19)

Next, similarly to S0 in step (i), construct the set S1 = {t : 1 ≤ t ≤
T , (R̃(1)

p ,t − B) < 0}. Then, calculate a new positive semidefinite matrix M̃1 =
(
1/n(S1)

)∑
t∈S1 VtV′

t , where Vt =
(
(R̃(1)

1,t − B), . . . , (R̃(1)
m,t − B)

)′ and n(S1)
is the cardinality of set S1. Finally, compute the m × 1 portfolio weight vector
ω2, i.e.,

ω2 =
α1E∗ − λ1

α1θ1 − λ21
M̃−1

1 µ̃1 +
θ1 − λ1E∗

α1θ1 − λ21
M̃−1

1 1, (20)
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where α1 = 1′M̃−1
1 1, λ1 = µ̃′

1M̃
−1
1 1, θ1 = µ̃′

1M̃
−1
1 µ̃1, and µ̃1 =

(R̃
(1)
1 , . . . , R̃

(1)
m )′ is an m × 1 vector of the mean returns associated with the

set S1.
(iii) Continue with step (ii) until at iteration step u + 1 the matrix M̃u+1 will be the

same as M̃u or, alternatively, if ∥ωu+1∥ ≈ ∥ωu∥. In that case, the weight vector
of the minimum DSR portfolio, with expected return E∗, is given by

ωu+1 =
αu E∗ − λu

αuθu − λ2u
M̃−1

u µ̃u +
θu − λu E∗

αuθu − λ2u
M̃−1

u 1, (u = 1, 2, . . .), (21)

where αu = 1′M̃−1
u 1, λu = µ̃′

uM̃
−1
u 1, θu = µ̃′

uM̃
−1
u µ̃u , and µ̃u =

(R̃
(u)
1 , . . . , R̃

(u)
m )′ is an m × 1 vector of the mean returns associated with the

set Su .
(iv) Finally, employ the quantities in step (iii) to approximate the DSR. Calling the

resulting value D̂SP
(I)
, i.e.,

D̂SR
(I)
(ωu+1) =

αu(E∗)2 − 2λu E∗ + θu

αuθu − λ2u
. (22)

Clearly, with Algorithm I the estimation of the portfolio returns changes at each
iteration step u. This may be time-consuming, in particular, when the set of potential
asset returns contains many variables. The following algorithm avoids this problem.

Algorithm II:

(i) Initial stage: Replace the vector Rt by its nonparametric counterpart R̃t , i.e.,

R̃t =
∑T

ℓ=1RℓK
(
Rℓ−Rt

h

)

∑T
ℓ=1K

(
Rℓ−Rt

h

) or R̃t = arg min
z∈Rm

∑T
ℓ=1∥Rℓ − z∥K

(
Rℓ−Rt

h

)

∑T
ℓ=1K

(
Rℓ−Rt

h

) ,

(23)

where K
(
Rℓ−Rt

h

)
= ∏m

i=1 K
(
Ri,ℓ−Ri,t

hi

)
. Then, for an arbitrary weight vector

ω0, compute the associated portfolio return R̃(0)
p ,t = ω′

0R̃t .
(ii) For a given B, and anm-dimensional vectorVt =

(
(R̃1,t −B), . . . , (R̃m,t −B)

)′,
compute the positive semidefinite matrix M̃0 = (1/T )

∑
t∈S0 VtV′

t , where S0 =
{t : 1 ≤ t ≤ T , (R̃(0)

p ,t − B) < 0}.
(iii) Obtain an m-dimensional weight vector ω1 by minimizing ω′M̃0ω subject to

ω′µ̃ = E∗, and ω′1 = 1, where µ̃ = (R̃1, . . . , R̃m)
′ is the empirical mean of the

vector of returns obtained in step (i). An explicit solution is given by

ω1 =
α0E∗ − λ0

α0θ − λ20
M̃−1

0 µ̃+ θ0 − λ0E∗

α0θ0 − λ20
M̃−1

0 1, (24)
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where α0 = 1′M̃−1
0 1, λ0 = µ̃′M̃−1

0 1, and θ0 = µ̃′M̃−1
0 µ̃.

(iv) Repeat steps (ii)–(iii) many times until the algorithm converges, i.e., when at
iteration step u + 1, ∥ωu+1∥ ≈ ∥ωu∥. Then

ωu+1 =
αu E∗ − λu

αuθu − λ2u
M̃−1

u µ̃+ θu − λu E∗

αuθu − λ2u
M̃−1

u 1, (u = 1, 2, . . .), (25)

where αu = 1′M̃−1
u 1, λu = µ̃′M̃−1

u 1, and θu = µ̃′M̃−1
u µ̃. We denote the DSR

associated with this algorithm by

D̂SR
(II)
(ωu+1) =

αu(E∗)2 − 2λu E∗ + θu

αuθu − λ2u
. (26)

Remark 2 When |S0| < m, the empiricalmatrix M̃0 will be singular so that generalized
inverse matrices should be used in (17) or equivalent equations.

4.2 Efficient frontier construction

In order to build the portfolio frontier, there is a need to select some other points in the
efficient set. As the DSR is a function of the expected return E∗, by varying this value

one can obtain a new value of D̂SR
(·)
(·) and, hence, the efficient frontier. The equation

for D̂SR
(·)
(·) shows that, while the final matrix Mu does not change, D̂SR

(·)
(·) is

a quadratic function of E∗. However, if E∗ changes considerably, both algorithms
end up with a new matrix Mu , and therefore a new quadratic function. Thus, the
portfolio frontier will be described by a sequence of segments of different quadratic
functions. The more assets are used, the smoother will be the portfolio frontier in
question, creating a similar effect as if one is adding more observations to the return
series. In addition, it is known that the nonparametric, kernel-based, technique creates
a continuous distribution of the returns, and hence gives rise to a new portfolio frontier
with a smoother shape.

Remark 3 Algorithms I and II both allow short selling, i.e., there are no constraints on
theweightsωi (i = 1, . . . ,m).With selling constraints the additional conditionωi ≥ 0
is needed. There are many available software packages to solve the corresponding
optimization problem; see, for instance, the R-quadprog package.

5 An empirical illustration

5.1 Data andmethods

To illustrate the proposed portfolio selection methods, we present results for a set of
French stock prices taken fromThomsonReuters. The data set consists ofm = 24 daily
stock closing prices {Pi,t }, covering the time period 07/01/2000–06/01/2017. These
assets belong to different sectors: banks, insurance, industry, energy, technology, and
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Fig. 1 Time plot of the daily CAC 40 index covering the period 07/01/2000–06/01/2017. Grey-shaded areas
denote the three subperiods under investigation

telecommunication. The stock prices under investigation are components of the CAC
40 index, the benchmark for the Euronext Paris market, reflecting the performance of
the 40 largest equities in France. Removing missing values, the data set contains 4,214
observations. For all series, the returns are computed as Ri,t = (Pi,t − Pi,t−1)/Pi,t−1
with Pi,t adjusted for dividend payments and stock splits.

Figure 1 shows a graph of the CAC 40 index for the complete time period. We see
a strong decrease of the index in mid 2008 during the financial crisis. It is also evident
that after 2012 a slow recovery of the French economy settles in, as indicated by
an upward trend. The grey-shaded areas depict the following three subperiods under
investigation: “calm” (I), covering the year 2004 (T = 259), “crisis” (II), covering
the year 2008 (T = 256), and “good” (III), covering the year 2013 (T = 255). The
number of contemporaneous cross-correlations having a p value smaller than 0.05,
out of a total of 276 p values for each subperiod, is 222 (calm), 276 (crisis), and 274
(good). Indeed, there are strong correlations between the individual stocks, which in
all cases are positive. These results suggest the use of portfolio selection methods that
explicitly take account of cross-correlations.

With respect to the portfolio optimization, we employ the following sevenmethods:

(1) Naive, i.e., Rp ,t =
∑m

i=1 ωi Ri,t with ωi = (1/m).
(2) Classic MV portfolio optimization. That is, using (1) with µ =

(
R1, . . . , Rm)

′,
M = (1/T )

∑
t UtU′

t , where Ut =
(
(R1,t − R1), . . . , (Rm,t − Rm)

)′ and Ri =
(1/T )

∑T
t=1 Ri,t (i = 1, . . . ,m).

(3) Univariate nonparametric mean DSR. That is, using (4) with Rp ,t replaced by
R̂ p ,t =

∑m
i=1 ωi R̂Mn

i,t , where R̂Mn
i,t is defined by (9).

(4) Univariate nonparametric median DSR. That is, using (4) with Rp ,t replaced by
R̂ p ,t =

∑m
i=1 ωi R̂Mdn

i,t , where R̂Mdn
i,t is defined by (10).

(5) Multivariate nonparametric mean DSR. That is Algorithm II with R̂Mn
t and R̂M-Mn

t .
(6) Multivariate nonparametric median DSR in two variants. That is

(i) Algorithm I with R̂Mdn
t and R̂M-Mdn

t , and

(ii) Algorithm II with R̂Mdn
t and R̂M-Mdn

t .
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Throughout all optimization procedures we set the benchmark B = 0 and the expected
return E∗ = 0.01 (1%). Moreover, the maximum number of iteration steps is fixed at
50. Note that Algorithm I with R̂Mn

t and R̂M-Mn
t is not included in our study. The reason

is that for this particular data set Algorithm I does not converge. That is, it oscillates
between two different optimal portfolios, albeit equivalent in terms of returns, for the
data under study. However, it should be said that theoretically both Algorithms I and
II converge.

5.2 Efficient frontiers

Figure 2 displays the efficient frontier curves of themultivariate nonparametricmedian
DSRmethod 6(ii) with no constraints on the portfolioweights. All other nonparametric
portfolio optimization methods produced similar curves which are not distinguishable
from the ones shown in Fig. 2, and hence they are not shown here. Compared to the
classical MV portfolio optimization, the multivariate nonparametric efficient fron-
tier based on median estimation dominates the other curves for any expected return.
Long-short positions can be based on the sign of the portfolio weights. Across all
nonparametric methods, 8 assets have negative signs for period I, 12 have negative
signs for period II, and 11 assets have negative signs for period III. Given these results,
one may take profit of the evolution of the stock market by taking short positions on
assets with nonnegative weights.

Next, we investigate optimization methods 2–6 with short selling constraint. Short
selling is a strategy to speculate if the market value of an asset is going to decline. It
can also be used to hedge long positions. To be more specific, the strategy involves
borrowing a stock from a broker and then selling it in the market. The stock is bought
back and returned to the broker at a later date, called covering the short. If the stock
drops, the short-seller buys at a lower price and then he makes money.

Under the short selling constraint, the results of the portfolio optimization methods
differ for each subperiod and different levels of expected return. For period I, the
optimal portfolio has nine nonzero weights corresponding to the following stocks:
ArcelorMital, Klépierre, Pernod Ricard, Safran, Technip, Total, Unibail-Rodamco,

Fig. 2 Efficient frontier curves of the multivariate nonparametric median DSR method (dotted lines) and
the naive method (solid lines)
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Vinci, and Danone. In contrast, for period II the following four stock indices have
nonzero weights: Air Liquide, Orange, Sodexo, and Danone. Finally, for period III
there are eight stock indices with nonzero weights: Air Liquide, Klépierre, Pernod
Ricard, Publicis Groupe, Safran, Sanofi, Sodexo, and Danone. Interestingly, for all
three time periods, Danone is part of the optimal portfolio for all levels of expected
return.

5.3 Forecasting evaluation

As a robustness check, this section reports the out-of-sample forecasting performance
of portfolio selection methods 1–6 against the CAC 40 index returns in terms of mean
forecast error (MFE),mean squared forecast error (MSFE), andmean absolute forecast
error (MAFE). We adopt a rolling window-scheme with a forecast horizon of one
quarter. In particular, all optimal portfolios are trained with a quarter and predictions
aremadeon the next quarter. For instance, for period I, thefirst quarter of 2004 is used to
test the performance of an optimal portfolio composed of individual securities selected
in the 4th quarter of 2003. The length of the initial in-sample estimation period, having
enough observations for reasonably accurate nonparametric estimates, balances with
our desire for a relatively long out-of-sample period for forecast evaluation. With such
a design, a total of 252 forecasts are generated.

The results are summarized in Table 1. There are some observations worth noting.
For Algorithm II the forecasts obtained from the nonparametric mean and median
DSR methods are equivalent in terms of the lowest values of the three performance
measures, and across all three time periods. For period II, all multivariate methods
perform considerably better than their univariate counterparts. This indicates that there

Table 1 Summary of forecasting results for each subperiod based on 252 out-of-sample results

Univariate Multivariate

Algorithm I Algorithm II

Naive Classic Mean Median Median Mean Median

I: Calm

MFE −0.0591 −0.0514 −0.0491 −0.0494 −0.0512 −0.0514 −0.0514

MSFE 0.0094 0.0094 0.0088 0.0090 0.0094 0.0094 0.0094

MAFE 0.0770 0.0784 0.0756 0.0763 0.0786 0.0784 0.0786

II: Crisis

MFE 0.0444 −0.0298 −0.0461 −0.0383 −0.0342 −0.0298 −0.0298

MSFE 0.0148 0.0082 0.0103 0.0087 0.0091 0.0082 0.0082

MAFE 0.1046 0.0784 0.0855 0.0763 0.0818 0.0784 0.0784

III: Good

MFE −0.0947 −0.0527 −0.0513 −0.0521 −0.0540 −0.0513 −0.0527

MSFE 0.0167 0.0082 0.0082 0.0086 0.0082 0.0082 0.0082

MAFE 0.1023 0.0726 0.0715 0.0731 0.0725 0.0726 0.0726
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is some gain in usingmultivariate portfolio selectionmethods that account for possible
cross-correlations between asset returns. On the other hand, the forecasting results for
the univariate and multivariate methods are qualitatively similar for periods I and III.
Finally, we see that it is easy to outperform the naive benchmark method.

6 Conclusion

In this paper, we propose multivariate nonparametric estimators of the conditional
mean and conditional median for mean–DSR optimization. In particular, the esti-
mators account for possible interrelationships between asset returns, as for instance
quantified by cross-correlations. To implement the proposed estimators, we provide
two computational algorithms for efficient portfolio selection. Via the analysis of 24
French stock market returns, we evaluate the in-sample performance of classical and
nonparametric portfolio selection methods with and without restrictions on the portfo-
lio weights. In addition, we compare the out-of-sample performance of seven portfolio
selectionmethods in forecasting theCAC40 index returns during three highly different
time periods.

From a theoretical point of view, it is clear that the proposed nonparametric multi-
variate methods are more natural than their univariate counterparts when asset returns
are correlated. This particular extension has not been considered in the current liter-
ature. Algorithm II provides an efficient and simple tool for this purpose. Moreover,
the algorithm allows for heavy-tailed or asymmetric distribution of portfolio returns
by considering univariate and multivariate kernel-based median estimators. Finally, it
is good to mention that the computational burden of Algorithm II is minimal.

Supplementarymaterial

Data andR codes, as supplementarymaterial, are available at: http://www.jandegooijer.
nl.
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