Introduction à la statistique non paramétrique

Mathieu Ribatet—Full Professor of Statistics

Quelques références bibliographiques

- [1] B. W. Silverman. *Density Estimation for Statistics and Data Analysis*. Chapman & Hall, 1996.
- [2] A. B. Tsybakov. *Introduction to Nonparametric Estimation*. Springer Series in Statistics. Springer, 2009.

▶ 1. Introduction

- 1. Kernel Density Estimation
- 2. Non parametric regression

1. Introduction

Motivations

□ Le choix d'une loi de probabilité spécifique pourra toujours être sujet à débat
All models are wrong, but some are useful [George Cox]

Motivations

- Le choix d'une loi de probabilité spécifique pourra toujours être sujet à débat $All\ models\ are\ wrong,\ but\ some\ are\ useful [George\ Cox]$
- □ Pouvoir se détacher d'une loi paraît alors séduisant :
 - plus de modèle donc plus d'erreur¹
 - test d'hypothèse plus générique
 - permettra de vérifier la qualité d'un modèle paramétrique

¹personne n'y croit non ?

Exemples : paramétrique \rightarrow non paramétrique

Example 1. On dispose d'un n-échantillon iid X_1, \ldots, X_n . On souhaite estimer la densité de probabilité associée au modèle Gaussien

$$\left\{ f(x;\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) : x \in \mathbb{R}, (\mu,\sigma) \in \mathbb{R} \times (0,\infty) \right\},\,$$

de sorte que l'estimation se résume à estimer μ et σ .

En non paramétrique on pourra s'intéresser au problème de l'estimation d'une fonction f inconnue vivant dans l'espace

 $\{f : densité de probabilité continue et Lipschitz\}.$

Exemples : paramétrique \rightarrow non paramétrique

Example 1. On dispose d'un n-échantillon iid $(X_1,Y_1),\ldots,(X_n,Y_n)$. On souhaite régresser Y en fonction de X par le modèle linéaire

$$Y = \beta_0 + X^{\top} \boldsymbol{\beta} + \varepsilon, \qquad \varepsilon \sim N(0, \sigma^2),$$

de sorte que l'estimation se résume à estimer β_0 , β et σ^2 . En non paramétrique on pourra s'intéresser au problème

$$Y = f(X) + \varepsilon, \qquad \mathbb{E}(\varepsilon) = 0,$$

où f est une fonction inconnue vivant dans l'espace

 $\{f : \text{ fonction de classe } \mathcal{C}^1\}.$

- 1. Introduction
 - 1. Kernel Density
- **Estimation**
- 2. Non parametric regression

1. Kernel Density Estimation

You'll learn what's behind

```
> plot(density(some_data, kernel = "epanechnikov", bw = 0.5))
```

```
from sklearn.neighbors import KernelDensity
kde = KernelDensity(kernel='gaussian', bandwidth=0.2).fit(some_data)
```

Objectives

We have n independent copies X_1, \ldots, X_n with (unknown) cumulative density function F and probability density function f, i.e.,

$$F(x) = \int_{-\infty}^{x} f(u) du.$$

Objectives

We have n independent copies X_1, \ldots, X_n with (unknown) cumulative density function F and probability density function f, i.e.,

$$F(x) = \int_{-\infty}^{x} f(u) du.$$

- \square We want to estimate f. Let's build together an estimator.
- \square Using the law of large number we have, for all $x \in \mathbb{R}$,

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n 1_{\{X_i \le x\}} \xrightarrow{\text{a.s.}} F(x), \qquad n \to \infty.$$

Now using (symmetric) finite diffences, we may use as estimator f(x) = F'(x) par

$$\tilde{f}_{n,h}(x) = \frac{\hat{F}_n(x+h) - \hat{F}_n(x-h)}{2h} = \frac{1}{2nh} \sum_{i=1}^n 1_{\{x-h < X_i \le x+h\}}.$$

Parzen-Rosenblatt estimator

Definition 1. The Parzen–Rosenblatt estimator for f is

$$\hat{f}_h \colon x \longmapsto \hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right),$$

where $K(\cdot)$ is a kernel (to be defined in a moment) and h > 0 is the bandwidth.

The estimator we built together is a special case of Parzen-Rosenblatt where

$$K(u) = \frac{1}{2} 1_{\{-1 \le u \le 1\}}.$$

Kernel

Definition 2. A function $K \colon \mathbb{R} \to \mathbb{R}_+$ is a kernel if

$$\square \quad \int_{\mathbb{R}} K(u) \mathrm{d}u = 1$$
 ;

$$\square$$
 $K(u) = K(-u)$ for all $u \in \mathbb{R}$.

Table 1: Some kernel families often used in practice.

Nom	Expression
Quadratic	$K(u) = \frac{15}{16}(1 - u^2)^2 1_{\{-1 \le u \le 1\}}$
Rectangular	$K(u) = \frac{1}{2} 1_{\{-1 \le u \le 1\}}$
Triangular	$K(u) = (1 - u)1_{\{-1 \le u \le 1\}}$
Epanechnikov	$K(u) = \frac{3}{4}(1 - u^2)1_{\{-1 \le u \le 1\}}$
Gaussian	$K(u) = \frac{1}{\sqrt{2\pi}} \exp(-u^2/2)$

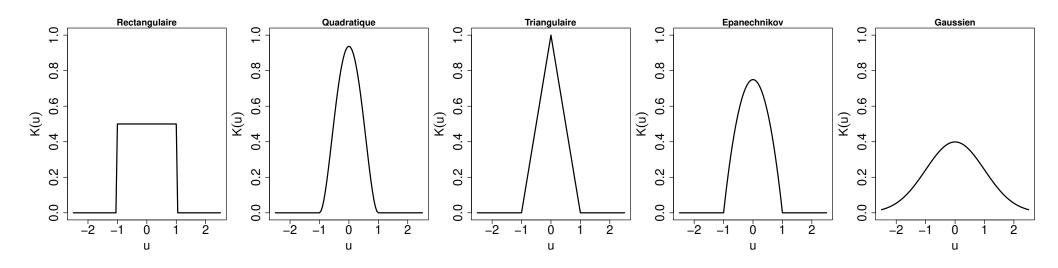


Figure 1: Graphe de quelques noyaux fréquemment utilisés.

Une somme de contributions

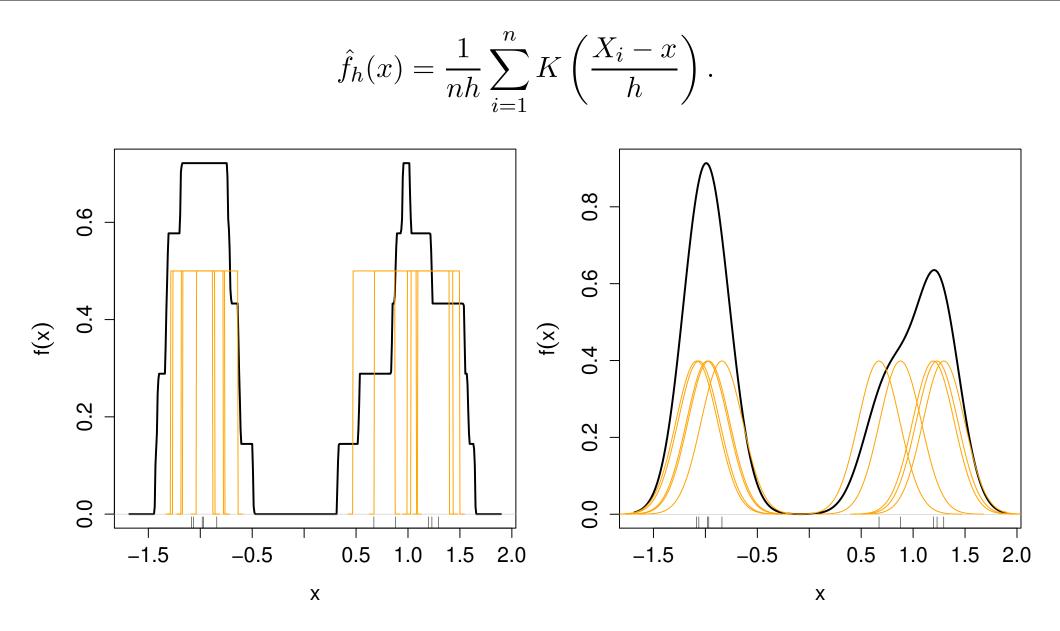


Figure 2: Illustration graphique de l'estimateur de Parzen-Rosenblatt.

Impact du noyau

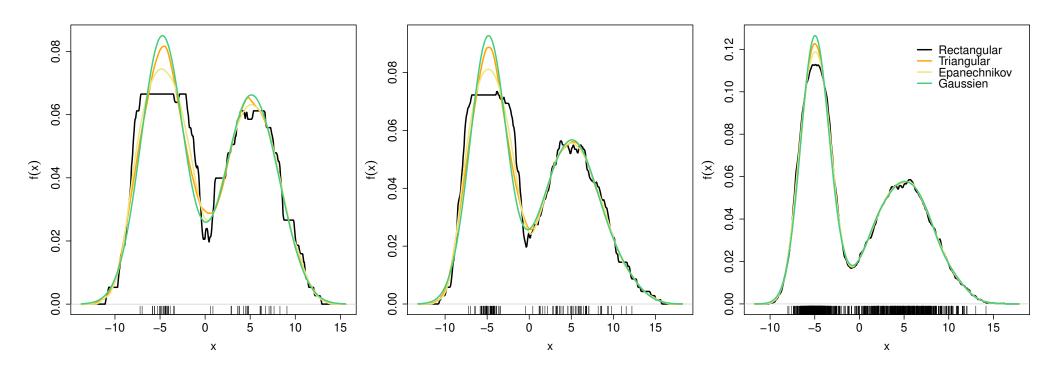


Figure 3: Évolution de l'impact du choix du noyau sur l'estimation de la densité. De gauche à droite : n=50,100,1000.

Impact du noyau

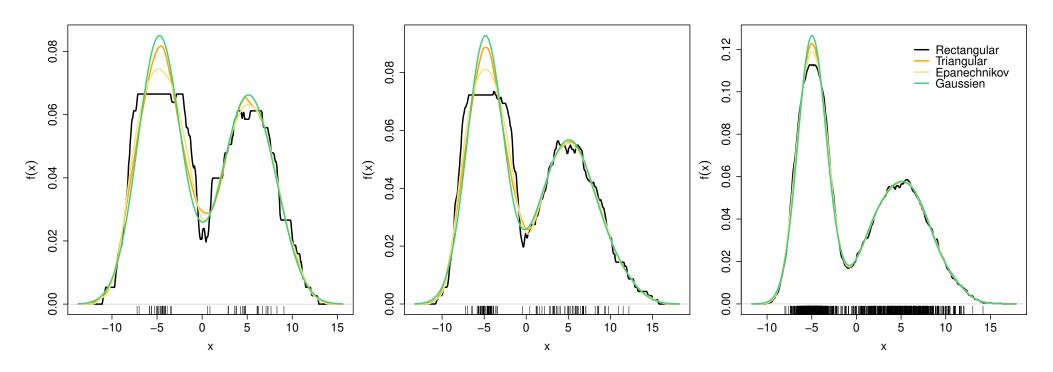


Figure 3: Évolution de l'impact du choix du noyau sur l'estimation de la densité. De gauche à droite : n = 50, 100, 1000.

Il semblerait que le choix du noyau ait de moins en moins de conséquence lorsque $n \to \infty$.

Impact de la fenêtre

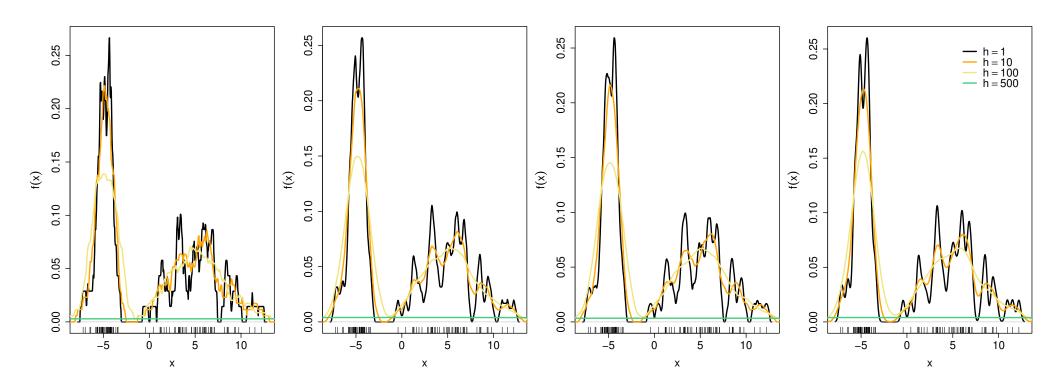


Figure 4: Evolution de l'impact du choix de la fenêtre sur l'estimation de la densité—n=100. De gauche à droite : noyau rectangulaire, triangulaire, Epanechnikov et Gaussien.

Impact de la fenêtre

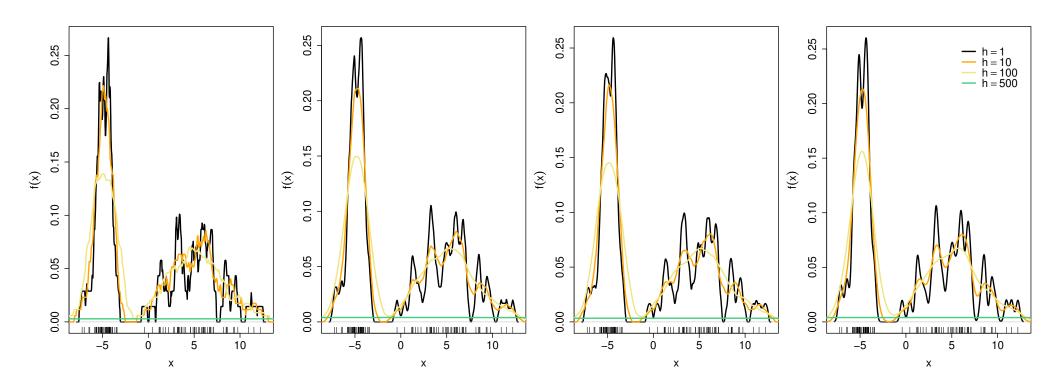


Figure 4: Evolution de l'impact du choix de la fenêtre sur l'estimation de la densité—n=100. De gauche à droite : noyau rectangulaire, triangulaire, Epanechnikov et Gaussien.

Il semblerait que le choix de la fenêtre soit bien plus important que le choix du noyau. Cela dit \hat{f} hérite de la régularité de K.

Biais de $\hat{f}_h(x)$

Proposition 1. Si la "vraie" densité f est au minimum \mathscr{C}^2 , on a pour tout $x \in \mathbb{R}$

Biais
$$\{\hat{f}_h(x)\} = \frac{h^2}{2}f''(x)\mu_2(K) + o(h^2), \qquad h \to 0,$$

où $\mu_2(K) = \int u^2 K(u) du$.

Biais de $\hat{f}_h(x)$

Proposition 1. Si la "vraie" densité f est au minimum \mathscr{C}^2 , on a pour tout $x \in \mathbb{R}$

Biais
$$\{\hat{f}_h(x)\} = \frac{h^2}{2}f''(x)\mu_2(K) + o(h^2), \qquad h \to 0,$$

où $\mu_2(K) = \int u^2 K(u) du$.

Le biais décroît en $h^2 \Rightarrow \text{suggère de prendre } h$ petit ;

Le biais dépend de la courbure de f, i.e., $f''(x) \Rightarrow$ on "lissera les pics et les vallées"

Lissage des pics et des vallées

Biais
$$\{\hat{f}_h(x)\} = \frac{h^2}{2}f''(x)\mu_2(K) + o(h^2), \qquad h \to 0,$$

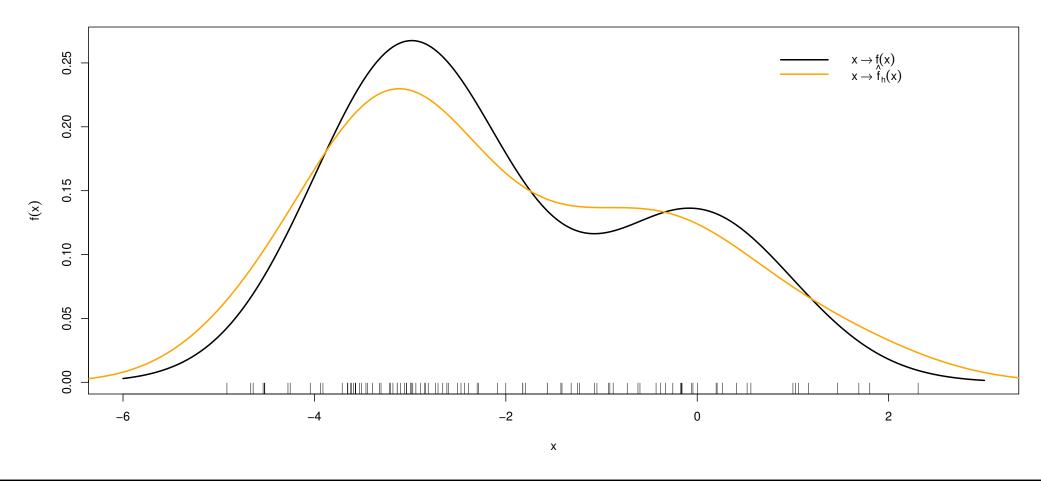


Figure 5: Illustration du lissage des pics et des vallées.

Non paramétrique (v2)

Mathieu Ribatet (mathieu.ribatet@ec-nantes.fr) - 16 / 34

Variance de $\hat{f}_h(x)$

Proposition 2. Si la "vraie" densité f est au minimum \mathscr{C}^1 et que le noyau $K \in L^2$, on a pour tout $x \in \mathbb{R}$

$$\operatorname{Var}\{\hat{f}_h(x)\} = \frac{1}{nh}f(x)\int K(u)^2 du + o\left(\frac{1}{nh}\right), \qquad nh \to \infty.$$

Variance de $\hat{f}_h(x)$

Proposition 2. Si la "vraie" densité f est au minimum \mathscr{C}^1 et que le noyau $K \in L^2$, on a pour tout $x \in \mathbb{R}$

$$\operatorname{Var}\{\hat{f}_h(x)\} = rac{1}{nh}f(x)\int K(u)^2\mathrm{d}u + o\left(rac{1}{nh}
ight), \qquad nh o\infty.$$

- \square La variance décroit en $nh \Rightarrow \text{suggère } h$ grand
- \Box La variance croit avec $\int K(u)^2 \mathrm{d} u \Rightarrow \mathrm{sugg\`ere}$ de prendre des noyaux plutôt réguliers

Compromis biais // variance

- \square Le biais croit en $h^2 \Rightarrow \text{sugg\`ere de prendre } h$ petit
- \square La variance décroit en $nh \Rightarrow suggère h grand$

Compromis biais // variance

- \square Le biais croit en $h^2 \Rightarrow \text{sugg\`ere de prendre } h$ petit
- \square La variance décroit en $nh \Rightarrow suggère h grand$

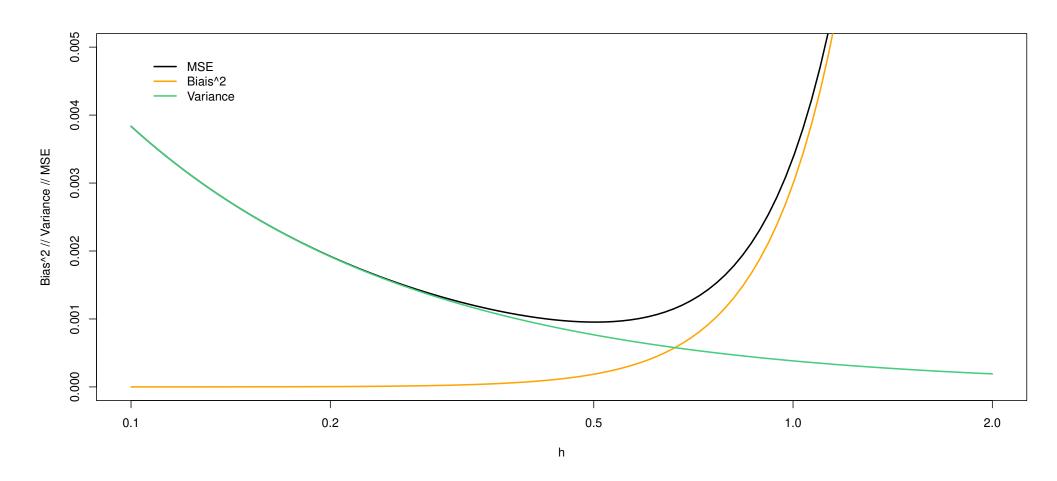


Figure 6: Illustration du compromis biais // variance.

Mathieu Ribatet (mathieu.ribatet@ec-nantes.fr) - 18 / 34

□ Pour évaluer la qualité d'un estimateur on s'intéressera souvent à l'erreur quadratique moyenne

$$MSE\{\hat{f}_h(x)\} = \mathbb{E}\left[\{\hat{f}_h(x) - f(x)\}^2\right] = \mathsf{Biais}\{\hat{f}_h(x)\}^2 + \mathsf{Var}\{\hat{f}_h(x)\}.$$

 Pour évaluer la qualité d'un estimateur on s'intéressera souvent à l'erreur quadratique moyenne

$$MSE\{\hat{f}_h(\mathbf{x})\} = \mathbb{E}\left[\{\hat{f}_h(x) - f(x)\}^2\right] = \mathsf{Biais}\{\hat{f}_h(x)\}^2 + \mathsf{Var}\{\hat{f}_h(x)\}.$$

□ Cependant c'est une mesure locale

 Pour évaluer la qualité d'un estimateur on s'intéressera souvent à l'erreur quadratique moyenne

$$MSE\{\hat{f}_h(\mathbf{x})\} = \mathbb{E}\left[\{\hat{f}_h(x) - f(x)\}^2\right] = \mathsf{Biais}\{\hat{f}_h(x)\}^2 + \mathsf{Var}\{\hat{f}_h(x)\}.$$

□ Cependant c'est une mesure locale et on préférera alors l'erreur quadratique moyenne intégrée

$$MISE(\hat{f}_h) = \int MSE\{\hat{f}_h(x)\} dx$$

□ Pour évaluer la qualité d'un estimateur on s'intéressera souvent à l'erreur quadratique moyenne

$$MSE\{\hat{f}_{h}(\mathbf{x})\} = \mathbb{E}\left[\{\hat{f}_{h}(x) - f(x)\}^{2}\right] = \mathsf{Biais}\{\hat{f}_{h}(x)\}^{2} + \mathsf{Var}\{\hat{f}_{h}(x)\}.$$

□ Cependant c'est une mesure locale et on préférera alors l'erreur quadratique moyenne intégrée

$$MISE(\hat{f}_h) = \int MSE\{\hat{f}_h(x)\} dx$$

Il parait séduisant de choisir h minimisant $h \mapsto MISE(\hat{f}_h)$!

Proposition 3. La fenêtre optimale minimisant le critère MISE (approché) est donnée par

$$h_* = \mu_2(K)^{-2/5} n^{-1/5} \left(\int K(u)^2 du \right)^{1/5} \left(\int f''(x)^2 dx \right)^{-1/5},$$

pour laquelle $MISE(\hat{f}_h)$ vaut (approximativement)

$$\frac{5}{4}C(K)\left(\int f''(x)^2 dx\right)^{1/5} n^{-4/5}, \quad C(K) = \mu_2(K)^{2/5} \left(\int K(u)^2 du\right)^{4/5}.$$

Proposition 3. La fenêtre optimale minimisant le critère MISE (approché) est donnée par

$$h_* = \mu_2(K)^{-2/5} n^{-1/5} \left(\int K(u)^2 du \right)^{1/5} \left(\int f''(x)^2 dx \right)^{-1/5},$$

pour laquelle $MISE(\hat{f}_h)$ vaut (approximativement)

$$\frac{5}{4}C(K)\left(\int f''(x)^2 dx\right)^{1/5} n^{-4/5}, \quad C(K) = \mu_2(K)^{2/5} \left(\int K(u)^2 du\right)^{4/5}.$$

 \square C'est décevant car h_* dépend de f'' inconnue !

Proposition 3. La fenêtre optimale minimisant le critère MISE (approché) est donnée par

$$h_* = \mu_2(K)^{-2/5} n^{-1/5} \left(\int K(u)^2 du \right)^{1/5} \left(\int f''(x)^2 dx \right)^{-1/5},$$

pour laquelle $MISE(\hat{f}_h)$ vaut (approximativement)

$$\frac{5}{4}C(K)\left(\int f''(x)^2 dx\right)^{1/5} n^{-4/5}, \quad C(K) = \mu_2(K)^{2/5} \left(\int K(u)^2 du\right)^{4/5}.$$

- \square C'est décevant car h_* dépend de f'' inconnue !
- Néanmoins...

Proposition 3. La fenêtre optimale minimisant le critère MISE (approché) est donnée par

$$h_* = \mu_2(K)^{-2/5} n^{-1/5} \left(\int K(u)^2 du \right)^{1/5} \left(\int f''(x)^2 dx \right)^{-1/5},$$

pour laquelle $MISE(\hat{f}_h)$ vaut (approximativement)

$$\frac{5}{4}C(K)\left(\int f''(x)^2 dx\right)^{1/5} n^{-4/5}, \quad C(K) = \mu_2(K)^{2/5} \left(\int K(u)^2 du\right)^{4/5}.$$

- \square C'est décevant car h_* dépend de f'' inconnue !
- □ Néanmoins...elle nous apprend que :
 - $h_* \downarrow 0$ as $n \to \infty$;
 - f irrégulière, i.e., $\int f''$ grand $\Rightarrow h$ devrait être petit.

Existe-t-il un noyau optimal?

$$MISE \approx \frac{5}{4}C(K) \left(\int f''(x)^2 dx \right)^{1/5} n^{-4/5}.$$

- Trouver le noyau optimal revient donc à minimiser C(K) sous la contrainte $\int K(u) du = \int u^2 K(u) du = 1$ et $K \geq 0$.
- ☐ Hodges and Lehman [1956] ont montré que le noyau optimal est alors de la forme

$$K_e(u) = \frac{3}{4}(1 - u^2)1_{\{-1 \le u \le 1\}},$$
 [Noyau d'Epanechnikov].

Existe-t-il un noyau optimal?

$$MISE \approx \frac{5}{4}C(K) \left(\int f''(x)^2 dx \right)^{1/5} n^{-4/5}.$$

- Trouver le noyau optimal revient donc à minimiser C(K) sous la contrainte $\int K(u) du = \int u^2 K(u) du = 1$ et $K \geq 0$.
- ☐ Hodges and Lehman [1956] ont montré que le noyau optimal est alors de la forme

$$K_e(u) = \frac{3}{4}(1 - u^2)1_{\{-1 \le u \le 1\}},$$
 [Noyau d'Epanechnikov].

 On peut "s'amuser" à comparer l'optimalité d'un noyau par rapport au noyau de référence Epanechnikov, i.e., en calculant

Efficacité =
$$\left(\frac{C(K)}{C(K_e)}\right)^{5/4} = \frac{\int K(u)^2 du}{\int K_e(u)^2 du}$$
.

Oui mais...pas tant que cela

Table 2: Efficacité (au sens $C(K)/C(K_e)$) de quelques familles de noyaux couramment utilisés.

Nom	Expression	Efficacité
Epanechnikov	$K(u) = \frac{3}{4}(1 - u^2)1_{\{-1 \le u \le 1\}}$	1
Quadratique	$K(u) = \frac{15}{16}(1 - u^2)^2 1_{\{-1 \le u \le 1\}}$	≈ 0.9939
Triangulaire	$K(u) = (1 - u)1_{\{-1 \le u \le 1\}}$	≈ 0.9859
Gaussien	$K(u) = \frac{1}{\sqrt{2\pi}} \exp(-u^2/2)$	≈ 0.9512
Rectangulaire	$K(u) = \frac{1}{2} 1_{\{-1 \le u \le 1\}}$	≈ 0.9295

Oui mais...pas tant que cela

Table 2: Efficacité (au sens $C(K)/C(K_e)$) de quelques familles de noyaux couramment utilisés.

Nom	Expression	Efficacité
Epanechnikov	$K(u) = \frac{3}{4}(1 - u^2)1_{\{-1 \le u \le 1\}}$	1
Quadratique	$K(u) = \frac{15}{16}(1 - u^2)^2 1_{\{-1 \le u \le 1\}}$	≈ 0.9939
Triangulaire	$K(u) = (1 - u)1_{\{-1 \le u \le 1\}}$	≈ 0.9859
Gaussien	$K(u) = \frac{1}{\sqrt{2\pi}} \exp(-u^2/2)$	≈ 0.9512
Rectangulaire	$K(u) = \frac{1}{2} 1_{\{-1 \le u \le 1\}}$	≈ 0.9295

On comprend mieux pourquoi le choix de la famille du noyau n'est pas si critique. En pratique on choisira soit l'optimal soit un noyau avec la régularité désirée , i.e., $\mathscr{C}^1,\mathscr{C}^2$

Fenêtre optimale : La règle empirique de Silverman

$$h_* = \mu_2(K)^{-2/5} n^{-1/5} \left(\int K(u)^2 du \right)^{1/5} \left(\int f''(x)^2 dx \right)^{-1/5},$$

- $\hfill\square$ Principe : Comme f inconnue on fera les calculs pour $f \sim N(\mu, \sigma^2)$ et K noyau Gaussien
- Cela nous donnera une "indication" de la fenêtre optimale.
- □ Cette dernière est donnée par

$$h_{\text{Silverman}} = \left(\frac{4}{3n}\right)^{1/5} \hat{\sigma} \approx 1.06 \hat{\sigma} n^{-1/5}, \qquad \hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}.$$

Fenêtre optimale : La règle empirique de Silverman

$$h_* = \mu_2(K)^{-2/5} n^{-1/5} \left(\int K(u)^2 du \right)^{1/5} \left(\int f''(x)^2 dx \right)^{-1/5},$$

- $\hfill\Box$ Principe : Comme f inconnue on fera les calculs pour $f \sim N(\mu, \sigma^2)$ et K noyau Gaussien
- □ Cela nous donnera une "indication" de la fenêtre optimale.
- ☐ Cette dernière est donnée par

$$h_{\text{Silverman}} = \left(\frac{4}{3n}\right)^{1/5} \hat{\sigma} \approx 1.06 \hat{\sigma} n^{-1/5}, \qquad \hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}.$$

Cette fenêtre sera adaptée lorsque la vraie densité f est assez proche d'une loi normale, i.e., unimodale, à peu près symétrique, ayant des queues de distributions légères.

Fenêtre optimale : Validation croisée

$$\arg\min_{h>0} MISE(\hat{f}_h) = \arg\min_{h>0} \mathbb{E}\left[\int \left\{\hat{f}_h(x) - f(x)\right\}^2 dx\right]$$

- \square Nous avons vu que la solution dépend malheureusement de $f\ldots$
- \square Pourquoi ne pas minimiser un problème indépendant de f qui serait un estimateur du premier ?
- ☐ Travaillons un peu sur cette expression à minimiser. . .

$$\begin{split} J(h) &= \mathbb{E}\left[\int \left\{\hat{f}_h(x) - f(x)\right\}^2 \mathrm{d}x\right] \\ &= \mathbb{E}\left[\int \hat{f}_h(x)^2 \mathrm{d}x - 2 \int \hat{f}_h(x) f(x) \mathrm{d}x\right] + \underbrace{\int f(x)^2 \mathrm{d}x}_{\text{indépendant de h, on ignore}} \\ &= \mathbb{E}\left[\int \hat{f}_h(x)^2 \mathrm{d}x\right] - 2\mathbb{E}\left[\mathbb{E}_X\left\{\hat{f}_h(X)\right\}\right] \end{split}$$

$$\begin{split} J(h) &= \mathbb{E}\left[\int \left\{\hat{f}_h(x) - f(x)\right\}^2 \mathrm{d}x\right] \\ &= \mathbb{E}\left[\int \hat{f}_h(x)^2 \mathrm{d}x - 2 \int \hat{f}_h(x) f(x) \mathrm{d}x\right] + \underbrace{\int f(x)^2 \mathrm{d}x}_{\text{indépendant de h, on ignore}} \\ &= \mathbb{E}\left[\int \hat{f}_h(x)^2 \mathrm{d}x\right] - 2\mathbb{E}\left[\mathbb{E}_X\left\{\hat{f}_h(X)\right\}\right] \end{split}$$

lacktriangle On estimera J(h) (sans le terme indépendant de h) par

$$\tilde{J}(x) = \int \hat{f}_h(x)^2 dx - \frac{2}{n} \sum_{i=1}^n \hat{f}_{h,-i}(X_i), \quad \hat{f}_{h,-i}(x) = \frac{1}{(n-1)h} \sum_{\substack{j=1 \ j \neq i}}^n K\left(\frac{X_j - x}{h}\right).$$

Validation croisée : Leave one out

On vient de définir le critère de validation croisée "leave one out"

$$CV(h) = \int \hat{f}_h(x)^2 dx - \frac{2}{n(n-1)h} \sum_{i=1}^n \sum_{\substack{j=1 \ j \neq i}}^n K\left(\frac{X_j - X_i}{h}\right).$$

☐ On choisira donc pour fenêtre optimale (selon ce critère)

$$h_{CV} = \arg\min_{h>0} CV(h).$$

Oui mais...pas vraiment en fait ;-) (Tsybakov, Section 1.2.4)

□ Nous avons vu que le noyau d'Epanechnikov était optimal...

Oui mais...pas vraiment en fait ;-) (Tsybakov, Section 1.2.4)

- □ Nous avons vu que le noyau d'Epanechnikov était optimal...
- \square C'est vrai sous la contrainte de positivité du noyau K.
- □ Cela dit on peut tout à fait utiliser des noyaux admettant des valeurs négatives et poser l'estimateur

$$\hat{f}_h(x) = \frac{1}{nh} \max \left\{ \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right), 0 \right\}.$$

☐ Alors le noyau d'Epanechnikov n'est alors plus le noyau optimal.

Oui mais...pas vraiment en fait ;-) (Tsybakov, Section 1.2.4)

- □ Nous avons vu que le noyau d'Epanechnikov était optimal...
- \square C'est vrai sous la contrainte de positivité du noyau K.
- □ Cela dit on peut tout à fait utiliser des noyaux admettant des valeurs négatives et poser l'estimateur

$$\hat{f}_h(x) = \frac{1}{nh} \max \left\{ \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right), 0 \right\}.$$

☐ Alors le noyau d'Epanechnikov n'est alors plus le noyau optimal.

On choisira alors le noyau selon ses "convictions" quant à la régularité de la densité f.

- 1. Introduction
- 1. Kernel Density Estimation
 - 2. Non parametric
- > regression

2. Non parametric regression

Cadre de travail

- Soit (X,Y) un couple de variables aléatoires de densité f(x,y) et tel que $\mathbb{E}(|Y|)<\infty$.
- \square Nous cherchons à estimer la fonction

$$m : \mathbb{R}^p \longrightarrow \mathbb{R}$$

$$x \longmapsto m(x) = \mathbb{E}(Y \mid X = x).$$

- Contrairement aux modèles linéaires, nous ne supposerons pas que m(x) est de la forme $x^\top\beta$.
- $\ \square$ Au contraire nous supposerons que m est de forme inconnue.

Avant de commencer

- ☐ Il existe plusieurs possibilités pour cette problématique :
 - polynômes locaux ;
 - spline ;
 - plus proches voisins
- ☐ Mais ici, pour être cohérent, nous allons uniquement aborder la régression non paramétrique par noyaux.

Construction de l'estimateur

$$m(x) = \mathbb{E}(Y \mid X = x) = \frac{\int y f(x, y) dy}{f_X(x)}, \qquad f_X(x) = \int f(x, y) dy$$

- ☐ Il nous faut donc estimer deux quantités :
 - $f_X(\cdot)$ mais ça on sait déjà le faire ;-)
 - f(x,y) qui est une densité bivariée.
- \square Pour f(x,y) on va utiliser l'estimateur suivant

$$\hat{f}_{h_1,h_2}(x,y) = \frac{1}{nh_1h_2} \sum_{i=1}^n K_{h_1} \left(\frac{X_i - x}{h_1} \right) K_{h_2} \left(\frac{Y_i - x}{h_2} \right).$$

Construction de l'estimateur

$$m(x) = \mathbb{E}(Y \mid X = x) = \frac{\int y f(x, y) dy}{f_X(x)}, \qquad f_X(x) = \int f(x, y) dy$$

- ☐ Il nous faut donc estimer deux quantités :
 - $f_X(\cdot)$ mais ça on sait déjà le faire ;-)
 - f(x,y) qui est une densité bivariée.
- \square Pour f(x,y) on va utiliser l'estimateur suivant

$$\hat{f}_{h_1,h_2}(x,y) = \frac{1}{nh_1h_2} \sum_{i=1}^n K_{h_1} \left(\frac{X_i - x}{h_1} \right) K_{h_2} \left(\frac{Y_i - x}{h_2} \right).$$

On utilise ici une forme spécifique de noyaux sur \mathbb{R}^2 , le noyau produit.

L'estimateur de Nadaraya-Watson

Definition 3. L'estimateur de Nadaraya-Watson pour l'espérance conditionnelle $m(x) = \mathbb{E}(Y \mid X = x)$ est donné par

$$\hat{m}_h(x) = \begin{cases} \frac{n^{-1} \sum_{i=1}^n Y_i K\left(\frac{X_i - x}{h}\right)}{n^{-1} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right)}, & \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right) \neq 0\\ 0, & \text{sinon.} \end{cases}$$

L'estimateur de Nadaraya-Watson

Definition 3. L'estimateur de Nadaraya-Watson pour l'espérance conditionnelle $m(x) = \mathbb{E}(Y \mid X = x)$ est donné par

$$\hat{m}_h(x) = \begin{cases} \frac{n^{-1} \sum_{i=1}^n Y_i K\left(\frac{X_i - x}{h}\right)}{n^{-1} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right)}, & \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right) \neq 0\\ 0, & \text{sinon.} \end{cases}$$

□ Notons que l'on peut également l'écrire sous la forme

$$\hat{m}_h(x) = \sum_{i=1}^n W_{hi}(x)Y_i, \qquad W_{hi}(x) = \frac{K\{(X_i - x)/h\}}{\sum_{j=1}^n K\{(X_j - x)/h\}}$$

L'estimateur de Nadaraya-Watson

Definition 3. L'estimateur de Nadaraya-Watson pour l'espérance conditionnelle $m(x) = \mathbb{E}(Y \mid X = x)$ est donné par

$$\hat{m}_h(x) = \begin{cases} \frac{n^{-1} \sum_{i=1}^n Y_i K\left(\frac{X_i - x}{h}\right)}{n^{-1} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right)}, & \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right) \neq 0\\ 0, & \text{sinon.} \end{cases}$$

Notons que l'on peut également l'écrire sous la forme

$$\hat{m}_h(x) = \sum_{i=1}^n W_{hi}(x)Y_i, \qquad W_{hi}(x) = \frac{K\{(X_i - x)/h\}}{\sum_{j=1}^n K\{(X_j - x)/h\}}$$

L'estimateur de Nadaraya-Watson est donc une moyenne pondérée des Y_i .

Design fixe

 \square Si l'on se place dans le cas où la densité f_X de X est connue, i.e., design connu, alors on utilisera l'estimateur

$$\tilde{m}_h(x) = \frac{1}{nhf_X(x)} \sum_{i=1}^n Y_i K\left(\frac{X_i - x}{h}\right).$$

 \square En particulier si $f_X \sim U\{0,\ldots,T\}$, alors

$$\tilde{m}_h(x) = \frac{T+1}{nh} \sum_{i=1}^n Y_i K\left(\frac{X_i - x}{h}\right).$$

Design fixe

 \square Si l'on se place dans le cas où la densité f_X de X est connue, i.e., design connu, alors on utilisera l'estimateur

$$\tilde{m}_h(x) = \frac{1}{nhf_X(x)} \sum_{i=1}^n Y_i K\left(\frac{X_i - x}{h}\right).$$

 \square En particulier si $f_X \sim U\{0,\ldots,T\}$, alors

$$\tilde{m}_h(x) = \frac{T+1}{nh} \sum_{i=1}^n Y_i K\left(\frac{X_i - x}{h}\right).$$

Ce dernier résultat est également utilisé pour estimer la tendance d'une série temporelle, cf. intro. séries temporelles, même si le design n'est alors plus aléatoire.

Parce que nous n'avons pas assez de temps...

- La régression non paramétrique est un vaste domaine des statistiques
- □ Nous n'avons vu (trop rapidement) qu'une petite partie
- □ D'autres approches très utilisées existent, parmi lesquelles
 - les splines ;
 - les polynômes locaux ;
 - *k*-plus proches voisins ;
 - ...